cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226077 a(1)=1; a(n) = smallest positive integer not yet in the sequence, such that a(n) and a(n-1) have exactly one common 1-bit in their binary representations.

Original entry on oeis.org

1, 3, 2, 6, 4, 5, 9, 7, 10, 8, 11, 12, 20, 13, 17, 15, 18, 14, 19, 16, 21, 24, 22, 25, 33, 23, 34, 26, 35, 29, 36, 28, 37, 27, 38, 32, 39, 40, 30, 41, 48, 31, 65, 43, 52, 42, 49, 44, 50, 45, 67, 46, 66, 47, 68, 53, 70, 51, 69, 54, 74, 55, 73, 56, 72, 57, 71, 58, 76, 59, 80, 60, 75, 64, 77, 82, 61, 96, 62, 81, 78, 97, 84, 98, 85, 104, 83, 100, 88
Offset: 1

Views

Author

Paul Tek, May 25 2013

Keywords

Comments

A000120(a(n) & a(n+1))=1, where & stands for the bitwise AND operator.
Permutation of the natural numbers with inverse A226093. - Reinhard Zumkeller, May 26 2013

Examples

			a(1)=1 by definition.
A000120(a(1) & 2)=0, A000120(a(1) & 3)=1, hence a(2)=3.
A000120(a(2) & 2)=1, hence a(3)=2.
A000120(a(3) & 4)=0, A000120(a(3) & 5)=0, A000120(a(3) & 6)=1, hence a(4)=6.
A000120(a(4) & 4)=1, hence a(5)=4.
A000120(a(5) & 5)=1, hence a(6)=5.
A000120(a(6) & 7)=2, A000120(a(6) & 8)=0, A000120(a(6) & 9)=1, hence a(7)=9.
A000120(a(7) & 7)=1, hence a(8)=7.
A000120(a(8) & 8)=0, A000120(a(8) & 10)=1, hence a(9)=10.
A000120(a(9) & 8)=1, hence a(10)=8.
		

Crossrefs

Programs

  • Haskell
    import Data.Bits ((.&.))
    import Data.List (delete)
    a226077 n = a226077_list !! (n-1)
    a226077_list = 1 : f 1 [2..] where
       f :: Integer -> [Integer] -> [Integer]
       f x zs = g zs where
         g (y:ys) | a209229 (x .&. y) == 0 = g ys
                  | otherwise = y : f y (delete y zs)
    -- Reinhard Zumkeller, May 26 2013