A226083 Smallest element of the set of largest prime powers p^k dividing C(2*n,n), where p is any prime factor of C(2*n,n).
2, 2, 4, 2, 4, 3, 3, 2, 4, 4, 3, 4, 7, 8, 5, 2, 4, 3, 3, 4, 3, 3, 13, 4, 8, 8, 16, 5, 3, 7, 7, 2, 3, 3, 7, 4, 7, 3, 11, 4, 5, 5, 7, 7, 5, 5, 5, 4, 8, 8, 11, 8, 5, 3, 3, 8, 3, 3, 5, 7, 7, 7, 3, 2, 4, 3, 3, 4, 7, 8, 11, 4, 8, 8, 5, 5, 5, 7, 7, 4, 5, 5, 3, 7, 5, 5, 3, 3, 9, 11, 7, 3, 7, 7, 13, 4, 8, 8, 3, 3
Offset: 1
Examples
a(89) = 9: C(2*89,89) = 2^4 * 3^2 * 5^3 * 7^2 * 11^1 * ... * 173^1, the smallest prime power is 3^2 = 9. 3^2 is the largest prime power for prime 3 dividing C(2*89,89). a(9993) = 59: 59^1 is the largest power of 59 dividing C(2*9993,9993), it is smaller than the largest powers of all other prime factors.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Programs
-
Maple
a:= proc(n) local h, i, m, p; p:=1; m:=infinity; while p < m do p:= nextprime(p); i:= 0; h:= 2*n; while h>0 do h:=iquo(h, p); i:=i+h od; h:= n; while h>0 do h:=iquo(h, p); i:=i-2*h od; if i>0 then m:= min(m, p^i) fi od; m end: seq(a(n), n=1..100);