cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A243099 A002061 and A000217 interleaved.

Original entry on oeis.org

0, 0, 0, 1, 1, 3, 3, 7, 6, 13, 10, 21, 15, 31, 21, 43, 28, 57, 36, 73, 45, 91, 55, 111, 66, 133, 78, 157, 91, 183, 105, 211, 120, 241, 136, 273, 153, 307, 171, 343, 190, 381, 210, 421, 231, 463, 253, 507, 276, 553, 300, 601
Offset: 3

Views

Author

Kival Ngaokrajang, Aug 19 2014

Keywords

Comments

a(n) is the number of the distinct symmetric 6-gon in a regular n-gon where vertices of 6-gon are placed on vertices of n-gon. See illustration.

Crossrefs

Cf. A001399: 3-gon in n-gon, A226088: 4-gon in n-gon, A004526: symmetric 4-gon in n-gon, A008805: symmetric 5-gon in n-gon.

Programs

  • Mathematica
    With[{r=Range[50]}, Join[{0, 0, 0}, Riffle[r^2-r+1, PolygonalNumber[r]]]] (* or *)
    LinearRecurrence[{0, 3, 0, -3, 0, 1}, {0, 0, 0, 1, 1, 3, 3, 7}, 100] (* Paolo Xausa, Feb 09 2024 *)
  • PARI
    a(n) = if(n<6,0,if(Mod(n,2)==0,(n/2-2)^2-(n/2-2)+1,(n/2-5/2)*(n/2-5/2+1)/2))
    for (n=3,100,print1(a(n),", "))
    
  • PARI
    concat([0,0,0], Vec(-x^6*(x^4+x+1)/((x-1)^3*(x+1)^3) + O(x^100))) \\ Colin Barker, Aug 19 2014

Formula

a(3) = a(4) = a(5) = 0; for n >= 6, a(n) = (n/2-2)^2-(n/2-2)+1 if even n, a(n) = (n/2-5/2)*(n/2-5/2+1)/2 if odd n.
From Colin Barker, Aug 19 2014: (Start)
a(n) = (71+41*(-1)^n-4*(7+3*(-1)^n)*n+(3+(-1)^n)*n^2)/16 for n>4.
a(n) = 3*a(n-2)-3*a(n-4)+a(n-6) for n>10.
G.f.: -x^6*(x^4+x+1) / ((x-1)^3*(x+1)^3). (End)
Sum_{n>=6} (-1)^(n+1)/a(n) = 2 - tanh(sqrt(3)*Pi/2)*Pi/sqrt(3). - Amiram Eldar, Feb 11 2024
Showing 1-1 of 1 results.