cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226089 Denominators of the series b(n+1) = (b(n)+k)/(1+b(n)*k); where k = 1/(n+1), b(1) = 0.

Original entry on oeis.org

1, 2, 7, 11, 8, 11, 29, 37, 23, 28, 67, 79, 46, 53, 121, 137, 77, 86, 191, 211, 116, 127, 277, 301, 163, 176, 379, 407, 218, 233, 497, 529, 281, 298, 631, 667, 352, 371, 781, 821, 431, 452, 947, 991, 518, 541, 1129, 1177, 613, 638, 1327, 1379, 716, 743, 1541
Offset: 1

Views

Author

Keywords

Comments

The sequence shares numerators with the Harary numbers, A160050.
This is the sequence 0 + 1/2 + 1/3 + ... + 1/n using relativistic velocity addition, where the addition of velocities a and b = (a + b)/(1 + a*b/c^2). That is, for objects traveling at 0 + c/2 + c/3 + ... + c/n relative to each other, the n-th object has velocity (A160050(n)/a(n))*c relative to a stationary observer.

Examples

			a(11) = a(10) + 1/11 using relativistic velocity addition. Since a(10) = 27/28, the sum is (27/28 + 1/11) / (1 + 27/28 * (1/11)) = (325 / 308) / (335/308) = 65/67.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3, -6, 10, -12, 12, -10, 6, -3, 1}, {1, 2, 7, 11, 8, 11, 29, 37, 23}, 100] (* or *)
    Module[{m = 1}, Denominator[NestList[(++m*# + 1)/(m + #) &, 0, 99]]] (* Paolo Xausa, Nov 06 2024 *)
  • PARI
    Vec(-x*(x^8-2*x^7+4*x^6-6*x^5+7*x^4-3*x^3+2*x^2+x+2) / ((x-1)^3*(x^2+1)^3) + O(x^100)) \\ Colin Barker, Jul 18 2015
  • R
    library(gmp); reladd<-function(x,y) (x+y)/(1+x*y)y=as.bigq(rep(1,100)); y[1]=y[1]/2; for(i in 2:100) y[i]=reladd(y[i-1],y[i]/(i+1)); denominator(y)
    

Formula

G.f.: -x*(x^8-2*x^7+4*x^6-6*x^5+7*x^4-3*x^3+2*x^2+x+2) / ((x-1)^3*(x^2+1)^3). - Colin Barker, Jul 18 2015
A160050(n)/a(n) = tanh(Sum_{k=2..n} arctanh(1/k)), a(n) = A160050(n) + (1,1,2,2). - Thomas Ordowski, Oct 23 2024
a(4k) = 4k^2 + 3k + 1, a(4k+1) = 4k^2 + 5k + 2, a(4k+2) = 8k^2 + 14k + 7, a(4k+3) = 8k^2 + 18k + 11. - David Radcliffe, Oct 25 2024

Extensions

Edited by Thomas Ordowski, Oct 23 2024
Edited by Paolo Xausa, Nov 06 2024