cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226097 a(n) = ((-1)^n + 2*n - 38)*(2*n - 38) + 41.

Original entry on oeis.org

1447, 1373, 1163, 1097, 911, 853, 691, 641, 503, 461, 347, 313, 223, 197, 131, 113, 71, 61, 43, 41, 47, 53, 83, 97, 151, 173, 251, 281, 383, 421, 547, 593, 743, 797, 971, 1033, 1231, 1301, 1523, 1601, 1847, 1933, 2203, 2297, 2591, 2693, 3011, 3121, 3463, 3581, 3947
Offset: 0

Views

Author

Arkadiusz Wesolowski, May 26 2013

Keywords

Comments

a(n) are distinct primes for n = 0 to 59.
All terms are in A202018.

Crossrefs

Programs

  • Magma
    [((-1)^n+a)*a+41 where a is 2*n-38 : n in [0..50]];
    
  • Mathematica
    g[n_] := 2*n - 38; f[n_] := ((-1)^n + g[n])*g[n] + 41; Table[f[n], {n, 0, 50}]
    EulerP[n_] := n^2 - n + 41; f[n_] := 2*n - (3 + (-1)^n)/2; LinearRecurrence[{1, 2, -2, -1, 1}, Table[EulerP@f[n], {n, 19, 15, -1}], {0, 50}]
  • PARI
    Vec((1447 - 74*x - 3104*x^2 + 82*x^3 + 1681*x^4) / ((1 - x)^3*(1 + x)^2) + O(x^100)) \\ Colin Barker, Aug 14 2017

Formula

G.f.: (1447-2*x*(37+1552*x-41*x^2)+(41*x^2)^2)/((1+x)^2*(1-x)^3).
From Colin Barker, Aug 14 2017: (Start)
G.f.: (1447 - 74*x - 3104*x^2 + 82*x^3 + 1681*x^4) / ((1 - x)^3*(1 + x)^2).
a(n) = 4*n^2 - 150*n + 1447 for n even.
a(n) = 4*n^2 - 154*n + 1523 for n odd.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>4.
(End)