A226080 Denominators in the Fibonacci (or rabbit) ordering of the positive rational numbers.
1, 1, 1, 2, 1, 3, 2, 1, 4, 3, 2, 3, 1, 5, 4, 3, 4, 2, 5, 3, 1, 6, 5, 4, 5, 3, 7, 4, 2, 7, 5, 3, 5, 1, 7, 6, 5, 6, 4, 9, 5, 3, 10, 7, 4, 7, 2, 9, 7, 5, 7, 3, 8, 5, 1, 8, 7, 6, 7, 5, 11, 6, 4, 13, 9, 5, 9, 3, 13, 10, 7, 10, 4, 11, 7, 2, 11, 9, 7, 9, 5, 12, 7
Offset: 1
Examples
The denominators are read from the rationals listed in "rabbit order": 1/1, 2/1, 3/1, 1/2, 4/1, 1/3, 3/2, 5/1, 1/4, 4/3, 5/2, 2/3, 6/1, ...
Links
- Clark Kimberling, Table of n, a(n) for n = 1..6000
- Clark Kimberling, The infinite Fibonacci tree and other trees generated by rules, Proceedings of the 16th International Conference on Fibonacci Numbers and Their Applications, Fibonacci Quarterly 52 (2014), no. 5, pp. 136-149.
- Index entries for fraction trees
Programs
-
Mathematica
z = 10; g[1] = {1}; g[2] = {2}; g[3] = {3, 1/2}; j[3] = Join[g[1], g[2], g[3]]; j[n_] := Join[j[n - 1], g[n]]; d[s_List, t_List] := Part[s, Sort[Flatten[Map[Position[s, #] &, Complement[s, t]]]]]; j[3] = Join[g[1], g[2], g[3]]; n = 3; While[n <= z, n++; g[n] = d[Riffle[g[n - 1] + 1, 1/g[n - 1]], g[n - 2]]]; Table[g[n], {n, 1, z}]; j[z] (* rabbit-ordered rationals *) Denominator[j[z]] (* A226080 *) Numerator[j[z]] (* A226081 *) Flatten[NestList[(# /. x_ /; x > 1 -> Sequence[x, 1/x - 1]) + 1 &, {1}, 9]] (* rabbit-ordered rationals, Danny Marmer, Dec 07 2014 *)
-
PARI
A226080_vec(N=100)={my(T=[1],S=T,A=T); while(N>#A=concat(A, apply(denominator, T=select(t->!setsearch(S,t), concat(apply(t->[t+1,1/t],T))))), S=setunion(S,Set(T)));A} \\ M. F. Hasler, Nov 30 2018
-
PARI
(A226080(n)=denominator(RabbitOrderedRational(n))); ROR=List(1); RabbitOrderedRational(n)={if(n>#ROR, local(S=Set(ROR), i=#ROR*2\/(sqrt(5)+1), a(t)=setsearch(S,t)||S=setunion(S,[listput(ROR,t)])); until( type(ROR[i+=1])=="t_INT" && n<=#ROR, a(ROR[i]+1); a(1/ROR[i])));ROR[n]} \\ M. F. Hasler, Nov 30 2018
Comments