A226143 a(n) is the smallest k > 0 such that A000793(n)^k >= n!.
1, 1, 2, 3, 3, 4, 4, 4, 5, 5, 6, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 9, 8, 9, 9, 9, 9, 9, 10, 9, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 13, 12, 13, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 16, 15, 16, 16
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A000793:= [1,2,3,4,6,6,12,15,20,30,30,60,60,84,105,140, 210,210,420,420,420,420,840,840,1260,1260,1540, 2310,2520,4620,4620,5460,5460,9240,9240,13860, 13860,16380,16380,27720,30030,32760,60060,60060, 60060,60060,120120]: a:=proc(n) global A000793; local k; for k from 1 do if A000793[n]^k >= n! then return k; fi; od; end;
-
Mathematica
b[n_, i_] := b[n, i] = Module[{p}, p = If[i < 1, 1, Prime[i]]; If[n == 0 || i < 1, 1, Max[b[n, i - 1], Table[p^j b[n - p^j, i - 1], {j, 1, Log[p, n] // Floor}]]]]; a[n_] := Module[{m}, If[n == 1, 1, m = b[n, If[n < 8, 3, PrimePi[Ceiling[ 1.328 Sqrt[n Log[n] // Floor]]]]]; Log[m, n!] // Ceiling]]; Array[a, 100] (* Jean-François Alcover, Nov 12 2020, after Alois P. Heinz in A000793 *)
Formula
a(n) = ceiling(log_m(n!)) where m = A000793(n).
Comments