A226145 Numbers n such that triangular(n) is a sum of three successive primes.
4, 5, 61, 82, 142, 166, 202, 233, 337, 394, 418, 422, 446, 493, 538, 661, 670, 841, 886, 1101, 1177, 1234, 1237, 1266, 1322, 1426, 1441, 1477, 1593, 1642, 1690, 1713, 1765, 1789, 1798, 1885, 1901, 1930, 1941, 2041, 2061, 2098, 2101, 2161, 2218, 2277, 2305, 2350, 2614
Offset: 1
Keywords
Examples
For k = 5, triangular(k) = triangular(5) = 15. 15/3 = 5. The next prime larger or equal to 5 is 5. The prime before 5 is 3. If there is a triple of consecutive primes that sum to 15 then 3 and 5 are two of them. Then the third one must be 15 - 3 - 5 = 7. 7 is prime and 3, 5 and 7 are consecutive primes (as 7 is the next larger prime than 5 or the previous prime to 3). Therefore, k = 5 is in the sequence. - _David A. Corneth_, Sep 18 2019
Links
- David A. Corneth, Table of n, a(n) for n = 1..10433 (first 800 terms from Harvey P. Dale, terms <= 10^6)
Crossrefs
Programs
-
C
#include
#include #include #define TOP (1ULL<<30) int main() { unsigned long long i, j, p1, p2, r, s; unsigned char *c = (unsigned char *)malloc(TOP/8); memset(c, 0, TOP/8); for (i=3; i < TOP; i+=2) if ((c[i>>4] & (1<<((i>>1) & 7)))==0 /*&& i<(1ULL<<32)*/) for (j=i*i>>1; j >3] |= 1 << (j&7); for (p2=2, p1=3, i=5; i < TOP; i+=2) if ((c[i>>4] & (1<<((i>>1) & 7)))==0) { s = p2 + p1 + i; r = sqrt(s*2); if (r*(r+1)==s*2) printf("%llu, ", r); p2 = p1, p1 = i; } return 0; } -
Mathematica
(Sqrt[8#+1]-1)/2&/@Select[Total/@Partition[Prime[Range[ 100000]],3,1], OddQ[ Sqrt[8#+1]]&] (* Harvey P. Dale, Sep 18 2019 *)
-
PARI
upto(n) = {my(res = List(), t = 10); for(i = 5, n, c = t/3; p = nextprime(ceil(c)); q = precprime(p - 1); r = t - p - q; if(isprime(r) && nextprime(r + 1) == q || nextprime(p + 1) == r, listput(res, i - 1)); t+=i); res}