cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226153 Numbers n such that triangular(n) is an average of 4 consecutive primes.

Original entry on oeis.org

5, 10, 14, 15, 22, 34, 49, 54, 64, 66, 81, 93, 104, 116, 121, 122, 146, 154, 156, 180, 194, 221, 222, 236, 270, 299, 320, 332, 334, 337, 346, 360, 369, 371, 374, 387, 416, 417, 429, 435, 444, 472, 492, 498, 511, 520, 551, 556, 617, 622, 637, 654, 657, 670, 674, 677, 680
Offset: 1

Views

Author

Alex Ratushnyak, May 28 2013

Keywords

Crossrefs

Programs

  • C
    #include 
    #include 
    #include 
    #define TOP (1ULL<<30)
    int main() {
      unsigned long long i, j, p1, p2, p3, r, s;
      unsigned char *c = (unsigned char *)malloc(TOP/8);
      memset(c, 0, TOP/8);
      for (i=3; i < TOP; i+=2)
        if ((c[i>>4] & (1<<((i>>1) & 7)))==0 /*&& i<(1ULL<<32)*/)
            for (j=i*i>>1; j>3] |= 1 << (j&7);
      for (p3=2, p2=3, p1=5, i=7; i < TOP; i+=2)
        if ((c[i>>4] & (1<<((i>>1) & 7)))==0) {
          s = p3 + p2 + p1 + i;
          if (s%4==0) {
            s/=4;
            r = sqrt(s*2);
            if (r*(r+1)==s*2) printf("%llu, ", r);
          }
          p3 = p2, p2 = p1, p1 = i;
        }
      return 0;
    }
  • Maple
    A034963 := proc(n)
        add(ithprime(i), i=n..n+3) ;
    end proc:
    istriangular:=proc(n) local t1; t1:=floor(sqrt(2*n)); if n = t1*(t1+1)/2 then return t1 ; else return -1; end if; end;
    for n from 1 to 90000 do
        s := A034963(n)/4 ;
        if type(s,'integer') then
        tr := istriangular(s) ;
        if tr >= 0  then
            printf("%d, ", tr) ;
        end if;
        end if;
    end do: # R. J. Mathar, Jun 06 2013
  • Mathematica
    Module[{nn=30000,ntrs,m},ntrs=Table[{n,(n(n+1))/2},{n,nn}];m=Mean/@Partition[Prime[ Range[ nn]],4,1];Select[ntrs,MemberQ[m,#[[2]]]&]][[;;,1]] (* Harvey P. Dale, Jun 08 2023 *)
    (Sqrt[8#+1]-1)/2&/@Select[Mean/@Partition[Prime[Range[25000]],4,1],OddQ[Sqrt[8#+1]]&] (* Harvey P. Dale, Sep 17 2024 *)