A226153 Numbers n such that triangular(n) is an average of 4 consecutive primes.
5, 10, 14, 15, 22, 34, 49, 54, 64, 66, 81, 93, 104, 116, 121, 122, 146, 154, 156, 180, 194, 221, 222, 236, 270, 299, 320, 332, 334, 337, 346, 360, 369, 371, 374, 387, 416, 417, 429, 435, 444, 472, 492, 498, 511, 520, 551, 556, 617, 622, 637, 654, 657, 670, 674, 677, 680
Offset: 1
Keywords
Links
- Zak Seidov, Table of n, a(n) for n = 1..3000
Programs
-
C
#include
#include #include #define TOP (1ULL<<30) int main() { unsigned long long i, j, p1, p2, p3, r, s; unsigned char *c = (unsigned char *)malloc(TOP/8); memset(c, 0, TOP/8); for (i=3; i < TOP; i+=2) if ((c[i>>4] & (1<<((i>>1) & 7)))==0 /*&& i<(1ULL<<32)*/) for (j=i*i>>1; j >3] |= 1 << (j&7); for (p3=2, p2=3, p1=5, i=7; i < TOP; i+=2) if ((c[i>>4] & (1<<((i>>1) & 7)))==0) { s = p3 + p2 + p1 + i; if (s%4==0) { s/=4; r = sqrt(s*2); if (r*(r+1)==s*2) printf("%llu, ", r); } p3 = p2, p2 = p1, p1 = i; } return 0; } -
Maple
A034963 := proc(n) add(ithprime(i), i=n..n+3) ; end proc: istriangular:=proc(n) local t1; t1:=floor(sqrt(2*n)); if n = t1*(t1+1)/2 then return t1 ; else return -1; end if; end; for n from 1 to 90000 do s := A034963(n)/4 ; if type(s,'integer') then tr := istriangular(s) ; if tr >= 0 then printf("%d, ", tr) ; end if; end if; end do: # R. J. Mathar, Jun 06 2013
-
Mathematica
Module[{nn=30000,ntrs,m},ntrs=Table[{n,(n(n+1))/2},{n,nn}];m=Mean/@Partition[Prime[ Range[ nn]],4,1];Select[ntrs,MemberQ[m,#[[2]]]&]][[;;,1]] (* Harvey P. Dale, Jun 08 2023 *) (Sqrt[8#+1]-1)/2&/@Select[Mean/@Partition[Prime[Range[25000]],4,1],OddQ[Sqrt[8#+1]]&] (* Harvey P. Dale, Sep 17 2024 *)