A226151 Numbers n such that triangular(n) is a sum of 4 consecutive primes.
8, 15, 39, 56, 60, 144, 155, 203, 212, 216, 263, 388, 451, 464, 480, 555, 619, 644, 680, 723, 736, 788, 791, 799, 876, 903, 1012, 1056, 1143, 1239, 1284, 1368, 1479, 1547, 1611, 1684, 1695, 1703, 1827, 1859, 1908, 1939, 2100, 2108, 2135, 2148, 2152, 2187, 2199, 2216
Offset: 1
Keywords
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..500
Programs
-
C
#include
#include #include #define TOP (1ULL<<30) int main() { unsigned long long i, j, p1, p2, p3, r, s; unsigned char *c = (unsigned char *)malloc(TOP/8); memset(c, 0, TOP/8); for (i=3; i < TOP; i+=2) if ((c[i>>4] & (1<<((i>>1) & 7)))==0 /*&& i<(1ULL<<32)*/) for (j=i*i>>1; j >3] |= 1 << (j&7); for (p3=2, p2=3, p1=5, i=7; i < TOP; i+=2) if ((c[i>>4] & (1<<((i>>1) & 7)))==0) { s = p3 + p2 + p1 + i; r = sqrt(s*2); if (r*(r+1)==s*2) printf("%llu, ", r); p3 = p2, p2 = p1, p1 = i; } return 0; } -
Maple
istriangular:=proc(n) local t1; t1:=floor(sqrt(2*n)); if n = t1*(t1+1)/2 then return t1 ; else return -1; end if; end; A034963 := proc(n) add(ithprime(i),i=n..n+3) ; end proc: for n from 1 to 90000 do ist := istriangular(A034963(n)) ; if ist >= 0 then printf("%d,",ist) ; end if; end do: # R. J. Mathar, Jun 04 2013
-
Mathematica
(Sqrt[8#+1]-1)/2&/@Select[Total/@Partition[Prime[Range[ 60000]],4,1], OddQ[ Sqrt[8#+1]]&] (* Harvey P. Dale, Apr 06 2016 *)