A226161 Least positive integer k such that 1 + 1/2 + ... + 1/k > n/2.
1, 2, 3, 4, 7, 11, 19, 31, 51, 83, 137, 227, 373, 616, 1015, 1674, 2759, 4550, 7501, 12367, 20390, 33617, 55425, 91380, 150661, 248397, 409538, 675214, 1113239, 1835421, 3026097, 4989191, 8225785, 13562027, 22360003, 36865412, 60780790, 100210581, 165219316
Offset: 1
Keywords
Examples
a(5) = 7 because 1 + 1/2 + ... + 1/6 < 5/2 < 1 + 1/2 + ... + 1/6 + 1/7.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..52
Programs
-
Mathematica
nn = 24; g = 1/2; f[n_] := 1/n; a[1] = 1; Do[s = 0; a[n] = NestWhile[# + 1 &, 1, ! (s += f[#]) > n*g &], {n, nn}]; Map[a, Range[nn]]
-
PARI
first(m)=my(v=vector(m),i,k);for(i=1,m,k=1;while(sum(x=1,k,1/x)<=i/2,k++);v[i]=k;);v; \\ Anders Hellström, Jul 19 2015
Extensions
a(29)-a(35) from Jean-François Alcover, Jun 04 2013
a(36)-a(37) from Jon E. Schoenfield, Aug 31 2013
a(38)-a(39) from Jon E. Schoenfield, Jul 19 2015
Comments