A226167 Array read by antidiagonals: a(i,j) is the number of ways of labeling a tableau of shape (i,1^j) with the integers 1, 2, ... i+j-2 (each label being used once) such that the first row is decreasing, and the first column has m-1 labels.
1, 3, 1, 12, 5, 1, 60, 27, 7, 1, 360, 168, 48, 9, 1, 2520, 1200, 360, 75, 11, 1, 20160, 9720, 3000, 660, 108, 13, 1, 181440, 88200, 27720, 6300, 1092, 147, 15, 1, 1814400, 887040, 282240, 65520, 11760, 1680, 192, 17, 1, 19958400, 9797760, 3144960, 740880, 136080, 20160, 2448, 243, 19, 1
Offset: 1
Examples
There are a(3,2) = 7 ways of labeling the tableau of shape (3,1,1) with 1, 2 and 3 (with each label being used once) such that the first row is decreasing and the first column has 1 label: 1 2 3 X X X X X X X 1 2 3 X X32 X31 X21 X32 X31 X21 321 The matrix [a(i,j)]_(6 x 6) is given below: [1 3 12 60 360 2520] [1 5 27 168 1200 9720] [1 7 48 360 3000 27720] [1 9 75 660 6300 65520] [1 11 108 1092 11760 136080] [1 13 147 1680 20160 257040]
Links
- Alois P. Heinz, Rows n = 1..141, flattened
- C. Berg, N. Bergeron, F. Saliola, L. Serrano, and M. Zabrocki, A Lift of the Schur and Hall-Littlewood Bases to Non-Commutative Symmetric Functions, 10-11.
Crossrefs
Main diagonal gives: A023999. - Alois P. Heinz, Jan 21 2014
Programs
-
Maple
a:= (i, j)-> (i+j-2)!/i!*(2*i+j-1)*j/2: seq(seq(a(i, 1+d-i), i=1..d), d=1..12); # Alois P. Heinz, Jan 21 2014
-
Mathematica
a[n_,k_]:=(n+k-2)!/n!*(2*n+k-1)*k/2 ; Print[Array[a[#1,#2]&,{50,50}]//MatrixForm] (* A program which gives a list of tableaux *) a[i_, j_] := Module[{f, list1, el, emptylist, n}, f[q_] := StringReplace[StringReplace[StringReplace[ StringReplace[ToString[q], ToString[i + j - 1] -> "X"], ", " -> ""], "{" -> ""], "}" -> ""]; list1 = Permutations[Join[Table[q, {q, 1, i + j - 2}], {i + j - 1, i + j - 1}]]; el[q_] := First[Take[list1, {q, q}]]; emptylist = {}; n = 1; While[n < 1 + Length[list1], If[Take[el[n], {j + 1, i + j}] == Sort[Take[el[n], {j + 1, i + j}], Greater] && Count[Take[el[n], {1, j + 1}], i + j - 1] == 2, emptylist = Append[emptylist, f[el[n]]], Null]; n++]; Print[emptylist]]
-
Sage
NSym = NonCommutativeSymmetricFunctions(QQ) ; QSym = QuasiSymmetricFunctions(QQ) ; F = QSym.Fundamental() ; H = NSym.complete() ; def a(n, m): expr = H([n]+[1 for q in range(m)]) ; w=1 ; while w
Formula
a(i,j) = (i+j-2)!/i!*(2*i+j-1)*j/2.
Comments