A226193 The number of medial quasigroups of order n, up to isomorphism.
1, 1, 5, 13, 19, 5, 41, 73, 116, 19, 109, 65, 155, 41, 95, 669, 271, 116, 341, 247, 205, 109, 505, 365, 1084, 155, 1574, 533, 811, 95, 929, 4193, 545, 271, 779, 1508, 1331, 341, 775, 1387, 1639, 205, 1805, 1417, 2204, 505, 2161, 3345, 4388, 1084, 1355, 2015, 2755, 1574, 2071, 2993, 1705, 811, 3421, 1235, 3659, 929, 4756
Offset: 1
Links
- David Stanovsky, Table of n, a(n) for n = 1..63
- David Stanovský and Petr Vojtechovský, Central and medial quasigroups of small order, arxiv preprint arXiv:1511.03534 [math.GR], 2015.
- Wikipedia, Medial magma
Programs
-
GAP
# gives the number of medial quasigroups over SmallGroup(n,k) LoadPackage("loops"); MQ := function( n, k ) local G, ct, elms, inv, A, f_reps, count,f, Cf, O, g_reps, g, Cfg, W, unused, c, Wc; G := SmallGroup( n, k ); G := IntoLoop( G ); ct := CayleyTable( G ); elms := Elements( G ); inv := List( List( [1..n], i -> elms[i]^(-1) ), x -> x![1] ); A := AutomorphismGroup( G ); f_reps := List( ConjugacyClasses( A ), Representative ); count := 0; for f in f_reps do Cf := Centralizer( A, f ); O := OrbitsDomain( Cf, A ); g_reps := List( O, x -> x[1] ); for g in g_reps do Cfg := Intersection( Cf, Centralizer( A, g ) ); W := Set( [1..n], w -> ct[w][ inv[ ct[w^f][w^g] ] ] ); unused := [1..n]; while not IsEmpty( unused ) do c := unused[1]; if f*g=g*f then count := count + 1; fi; if Size(W) = Length(unused) then unused := []; else Wc := Set( W, w -> ct[w][c] ); Wc := Union( Orbits( Cfg, Wc ) ); unused := Difference( unused, Wc ); fi; od; od; od; return count; end; # David Stanovsky, Nov 12 2015
-
Maple
a:=proc(n) if n = 1 then return 1; else return MAGMA:-Enumerate(n,'medial','quasigroup'); end if; end proc;
Extensions
a(9)-a(63) from David Stanovsky, Nov 12 2015
Comments