A226369 Number of tilings of a 5 X n rectangle using integer-sided square tiles of area > 1.
1, 0, 0, 0, 0, 1, 2, 0, 0, 0, 1, 4, 4, 0, 0, 1, 6, 12, 8, 0, 1, 8, 24, 32, 16, 1, 10, 40, 80, 80, 33, 12, 60, 160, 240, 193, 78, 84, 280, 560, 673, 464, 240, 448, 1120, 1793, 1810, 1168, 928, 2016, 4033, 5396, 4788, 3264, 3872, 8065, 13462, 15580, 12840, 10400
Offset: 0
Examples
a(6) = 2: ._._._._._._. ._._._._._._. | | | | | | | | | | |___|___|___| |_____|_____| | | | | | | | | | | |___|___|___| |_____|_____|
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,1,2).
Crossrefs
Column k=5 of A226206.
Programs
-
Maple
a:= n-> (Matrix(6, (i, j)-> `if`(i+1=j, 1, `if`(i=6, [2, 1, 0$4][j], 0)))^n. <<1, [0$4][], 1>>)[1, 1]: seq(a(n), n=0..70);
Formula
G.f.: 1/(1-x^5-2*x^6).
a(n) = a(n-5)+2*a(n-6) for n>5, a(0) = a(5) = 1, a(1) = a(2) = a(3) = a(4) = 0.