Original entry on oeis.org
2, 4, 11, 21, 31, 110, 124, 185, 279, 399, 716, 1028, 4552, 6207, 6543, 11424, 11557, 12251, 16199, 23043, 43390, 155798, 203095, 457523, 699782, 865318, 1294026, 2918851, 5635889, 6459777, 8999147, 9213126, 22383796, 28194383, 32131750, 105097565, 404165580
Offset: 1
First few terms of A001917 (has offset 2) are 1, 1, 2, 1, 1, 2, 1, 2, 1, 6, so a(1) to a(3) are 2, 4, 11.
-
W:=[]; r:=0; for n in [2..100000] do p:=NthPrime(n); a:=(p-1)/Modorder(2, p); if r lt a then r:=a; Append(~W,n); end if; end for; print W;
-
from itertools import islice
from sympy import nextprime, n_order
def agen():
record, v, p = -1, 1, 3
while True:
if v > record: record = v; yield record
v, p = (p-1)//n_order(2, p), nextprime(p)
print(list(islice(agen(), 20))) # Michael S. Branicky, Oct 09 2022
A367319
Base-2 Fermat pseudoprimes k such that (k-1)/ord(2, k) > (m-1)/ord(2, m) for all base-2 Fermat pseudoprimes m < k, where ord(2, k) is the multiplicative order of 2 modulo k.
Original entry on oeis.org
341, 1105, 1387, 2047, 4369, 4681, 5461, 13981, 15709, 35333, 42799, 60787, 126217, 158369, 215265, 256999, 266305, 486737, 617093, 1082401, 1398101, 2113665, 2304167, 4025905, 4188889, 4670029, 6236473, 6242685, 8388607, 13757653, 16843009, 17895697, 22369621
Offset: 1
-
pspQ[n_] := CompositeQ[n] && PowerMod[2, n - 1, n] == 1; seq[kmax_] := Module[{s = {}, r, rm = 0}, Do[If[pspQ[k], r = (k - 1)/MultiplicativeOrder[2, k]; If[r > rm, rm = r; AppendTo[s, k]]], {k, 1, kmax}]; s]; seq[10^6]
-
ispsp(n) = n > 1 && n % 2 && Mod(2, n)^(n-1) == 1 && !isprime(n);
lista(kmax) = {my(r, rm = 0); for(k = 1, kmax, if(ispsp(k), r = (k-1)/znorder(Mod(2, k)); if(r > rm, rm = r; print1(k, ", "))));}
A367320
Carmichael numbers k such that (k-1)/lambda(k) > (m-1)/lambda(m) for all Carmichael numbers m < k, where lambda is the Carmichael lambda function (A002322).
Original entry on oeis.org
561, 1105, 1729, 29341, 41041, 63973, 172081, 825265, 852841, 1773289, 5310721, 9890881, 12945745, 18162001, 31146661, 93869665, 133205761, 266003101, 417241045, 496050841, 509033161, 1836304561, 1932608161, 2414829781, 4579461601, 9799928965, 11624584621, 12452890681
Offset: 1
-
seq[kmax_] := Module[{s = {}, r, rm = 0, lam}, Do[If[CompositeQ[k], lam = CarmichaelLambda[k]; If[Mod[k, lam] == 1, r = (k - 1)/lam; If[r > rm, rm = r; AppendTo[s, k]]]], {k, 9, kmax, 2}]; s]; seq[10^6]
-
lista(kmax) = {my(r, rm = 0, lam); forcomposite(k = 4, kmax, if(k % 2, lam = lcm(znstar(k)[2]); if(k % lam == 1, r = (k-1)/lam; if(r > rm, rm = r; print1(k, ", ")))));}
Showing 1-3 of 3 results.