A226225 Expansion of phi(q) * phi(q^8) in powers of q where phi() is a Ramanujan theta function.
1, 2, 0, 0, 2, 0, 0, 0, 2, 6, 0, 0, 4, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 0, 4, 2, 0, 0, 0, 0, 0, 0, 2, 8, 0, 0, 6, 0, 0, 0, 0, 4, 0, 0, 4, 0, 0, 0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 6, 4, 0, 0, 4, 0, 0, 0, 0, 10, 0, 0, 0, 0
Offset: 0
Keywords
Examples
G.f. = 1 + 2*q + 2*q^4 + 2*q^8 + 6*q^9 + 4*q^12 + 2*q^16 + 4*q^17 + 4*q^24 + 2*q^25 + ...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..2500 from G. C. Greubel)
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^8], {q, 0, n}];
-
PARI
{a(n) = if( n<1, n==0, 2 * (n%4 < 2) * sumdiv( n, d, kronecker( -2, d)))};
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^16 + A))^5 / (eta(x + A) * eta(x^4 + A) * eta(x^8 + A) * eta(x^32 + A))^2, n))};
Formula
Expansion of (eta(q^2) * eta(q^16))^5 / (eta(q) * eta(q^4) * eta(q^8) * eta(q^32))^2 in powers of q.
Euler transform of period 32 sequence [2, -3, 2, -1, 2, -3, 2, 1, 2, -3, 2, -1, 2, -3, 2, -4, 2, -3, 2, -1, 2, -3, 2, 1, 2, -3, 2, -1, 2, -3, 2, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 32^(1/2) (t/i) f(t) where q = exp(2 Pi i t).
G.f.: (Sum_{k in Z} x^k^2) * (Sum_{k in Z} (x^8)^k^2).
a(4*n + 2) = a(4*n + 3) = a(8*n + 5) = 0. a(4*n) = a(8*n) = A033715(n). a(4*n + 1) = A033715(4*n + 1). a(8*n + 1) = 2 * A112603(n). a(8*n + 4) = 2 * A113411(n).
(-1)^n * a(n) = A242609(n). - Michael Somos, Feb 20 2015
Comments