A226229 Numbers m such that all lengths of runs of digits in base 2 representation of m are primes.
3, 7, 12, 24, 28, 31, 51, 56, 96, 99, 103, 115, 124, 127, 199, 204, 224, 227, 231, 248, 384, 387, 396, 408, 412, 415, 455, 460, 499, 508, 775, 792, 796, 799, 819, 824, 896, 899, 908, 920, 924, 927, 992, 995, 999, 1016, 1539, 1548, 1587, 1592, 1632, 1635, 1639, 1651, 1660
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
Programs
-
Haskell
import Data.List (group, genericLength) a226229 n = a226229_list !! (n-1) a226229_list = filter (all (== 1) . map (a010051 . genericLength) . group . a030308_row) [1..] -- Reinhard Zumkeller, Jun 05 2013
-
Maple
Runs := proc (L) local j, r, i, k: npr: j := 1; r[j] := L[1]: for i from 2 to nops(L) do if L[i] = L[i-1] then r[j] := r[j], L[i] else j := j+1: r[j] := L[i] end if end do: [seq([r[k]], k = 1 .. j)] end proc: RunLengths := proc (L) map(nops, Runs(L)) end proc: c := proc (n) ListTools:-Reverse(convert(n, base, 2)): RunLengths(%) end proc: npr := proc (s) local q, j: q := 0: for j to nops(s) do if isprime(s[j]) = true then q := q+1 else end if end do end proc: A := {}: for n to 1661 do if npr(c(n)) = nops(c(n)) then A := `union`(A, {n}) else end if end do: A; # most of the Maple program is due to W. Edwin Clark. # Emeric Deutsch, Jan 27 2018
-
Mathematica
Select[Range@1660, And @@ PrimeQ[Length /@ Split@ IntegerDigits[#, 2]] &] (* Giovanni Resta, Jun 01 2013 *)
Comments