A226233 Ten copies of each positive integer.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10
Offset: 1
Links
- S. Vaseghi (alias al-Hwarizmi), Combination of positive integers in terms of primes (sophisticated version 2)
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,1,-1).
Programs
-
Maple
A226233 := proc(n) option remember ; if n <= 10 then 1; elif n <=20 then 2; else procname(n-1)+procname(n-10)-procname(n-11) ; end if; end proc: seq(A226233(n),n=1..120) ; # R. J. Mathar, Jun 13 2025
-
Mathematica
p=11; k = (p - 1); alpha = (k + n - 1 - (Mod[(n - 1), k]))/k; Table[alpha, {n, 100}] Table[PadRight[{},10,n],{n,10}]//Flatten (* Harvey P. Dale, May 24 2021 *)
-
PARI
a(n)=(n+9)\10 \\ Charles R Greathouse IV, Jun 05 2013
Formula
a(n,p) = ((p-1) + n - (1 + ((n-1) mod (p-1))))/(p-1); p is a prime and n positive integer; for this sequence p = 11.
G.f.: x / ( (1+x)*(x^4-x^3+x^2-x+1)*(x^4+x^3+x^2+x+1)*(x-1)^2 ). - R. J. Mathar, Jun 13 2025
Comments