cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226240 Expansion of phi(q^4) * phi(q^8) + 2 * q *phi(q^2) * psi(q^8) in powers of q where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 2, 0, 4, 2, 0, 0, 0, 2, 6, 0, 4, 4, 0, 0, 0, 2, 4, 0, 4, 0, 0, 0, 0, 4, 2, 0, 8, 0, 0, 0, 0, 2, 8, 0, 0, 6, 0, 0, 0, 0, 4, 0, 4, 4, 0, 0, 0, 4, 2, 0, 8, 0, 0, 0, 0, 0, 8, 0, 4, 0, 0, 0, 0, 2, 0, 0, 4, 4, 0, 0, 0, 6, 4, 0, 4, 4, 0, 0, 0, 0, 10, 0, 4, 0, 0
Offset: 0

Views

Author

Michael Somos, Jun 01 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*q + 4*q^3 + 2*q^4 + 2*q^8 + 6*q^9 + 4*q^11 + 4*q^12 + 2*q^16 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(32), 1), 87); A[1] + 2*A[2] + 4*A[4] + 2*A[5] + 2*A[9] + 6*A[10] + 4*A[12] + 4*A[13] + 4*A[16]; /* Michael Somos, Jun 18 2014 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ 1 + 2 Sum[ Boole[ 2 != Mod[ k, 4]] q^k (1 + q^(2 k)) / (1 + q^(4 k)), {k, n}], {q, 0, n}];
  • PARI
    {a(n) = if( n<1, n==0, 2 * (n%4 != 2) * sumdiv( n, d, kronecker( -2, d)))};
    
  • PARI
    {a(n) = local(A, p, e); if( n<1, n==0, A = factor(n); 2 * prod( k= 1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p==2, e>1, if( p%8<5, e+1, (1 + (-1)^e) / 2)))))};
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^8 + A) * eta(x^16 + A))^3 / (eta(x^4 + A) * eta(x^32 + A))^2 + 2 * x * eta(x^4 + A)^5 * eta(x^16 + A)^2 / (eta(x^2 + A)^2 * eta(x^8 + A)^3), n))};
    

Formula

Expansion of phi(q) * phi(q^8) + 4 * q^3 * psi(q^8) * psi(q^16) in powers of q where phi(), psi() are Ramanujan theta functions.
a(n) = 2 * b(n) where b(n) is multiplicative and b(2) = 0, b(2^e) = 1 if e>1, b(p^e) = e+1 if p == 1, 3 (mod 8), b(p^e) = (1 + (-1)^e)/2 if p == 5, 7 (mod 8).
G.f.: 1 + 2 * Sum_{k>0 & k !=2 (mod 4)} q^k * (1 + q^(2*k)) / (1 + q^(4*k)).
a(4*n + 2) = 0. a(2*n + 1) = 2 * A113411(n). a(4*n) = A033715(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 3*Pi/(4*sqrt(2)) = 1.6660811... . - Amiram Eldar, Dec 29 2023