cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A226302 a(n) = P_n(-1), where P_n(x) is a certain polynomial arising in the enumeration of tatami mat coverings.

Original entry on oeis.org

1, -1, 2, -4, 6, -14, 20, -48, 70, -166, 252, -584, 924, -2092, 3432, -7616, 12870, -28102, 48620, -104824, 184756, -394404, 705432, -1494240, 2704156, -5692636, 10400600, -21785872, 40116600, -83688344, 155117520, -322494208, 601080390, -1246068806, 2333606220
Offset: 2

Views

Author

N. J. A. Sloane, Jun 06 2013

Keywords

Comments

See Erickson-Ruskey for precise definition. The polynomials P_n(x) are described as "mysterious".
Bisections give A082590 and A000984.

Crossrefs

Programs

  • Maple
    A226302 := proc(n)
        if type(n,even) then
            A000984(n/2-1) ;
        else
            -A082590((n-3)/2) ;
        end if;
    end proc: # R. J. Mathar, Nov 06 2013
  • Mathematica
    Rest[Rest[CoefficientList[Series[x^2*(1/Sqrt[1-4*x^2] - x/((1-2*x^2)*Sqrt[1-4*x^2])), {x, 0, 30}], x]]] (* Vaclav Kotesovec, Jun 14 2015, after Sergei N. Gladkovskii *)
    max = 30; Clear[g]; g[max + 2] = 1; g[k_] := g[k] = 1 - 2*x^2 - 2*x*(1 - 2*x^2)^2*(2*k+1)/( 2*x*(1 - 2*x^2)*(2*k+1) - (k+1)/(1 - x/g[k+1] )); gf = 1 - x/g[0]; CoefficientList[Series[gf, {x, 0, max}], x] (* Vaclav Kotesovec, Jun 14 2015, after Sergei N. Gladkovskii *)
    a = DifferenceRoot[Function[{a, n}, {(-(6*n^2) + 2*n + 4)*a[n+2] + (n^2 + n - 2)*a[n+4] + 8*(n - 1)*n*a[n] - 4*n*a[n+1] + 2*n*a[n+3] == 0, a[2] == 1, a[3] == -1, a[4] == 2, a[5] == -4}]]; Table[a[n], {n, 2, 36}] (* Jean-François Alcover, Feb 23 2019 *)
  • PARI
    Vec(x^2*(1/sqrt(1-4*x^2) - x/((1-2*x^2)*sqrt(1-4*x^2))) + O(x^50)) \\ G. C. Greubel, Jan 29 2017

Formula

Conjecture: (-n+2)*a(n) +(-n+2)*a(n-1) +2*(3*n-11)*a(n-2) +2*(3*n-14)*a(n-3) +4*(-2*n+9)*a(n-4) +8*(-n+6)*a(n-5)=0. - R. J. Mathar, Nov 06 2013
G.f. (for offset 0): 1/sqrt(1-4*x^2) - x/((1-2*x^2)*sqrt(1-4*x^2)) = 1 - x/W(0), where W(k)= 1 - 2*x^2 - 2*x*(1 - 2*x^2)^2*(2*k+1)/( 2*x*(1 - 2*x^2)*(2*k+1) - (k+1)/(1 - x/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jun 13 2015
Recurrence (for n>5): (n-5)*(n-2)*a(n) = -2*(n-4)*a(n-1) + 2*(n-5)*(3*n-10)*a(n-2) + 4*(n-4)*a(n-3) - 8*(n-5)*(n-4)*a(n-4). - Vaclav Kotesovec, Jun 14 2015
a(n) ~ (-1)^n * 2^(n-3/2) / sqrt(Pi*n). - Vaclav Kotesovec, Jun 14 2015

A226303 a(n) = sum of absolute values of coefficients of a certain polynomial P_n(x) arising in the enumeration of tatami mat coverings.

Original entry on oeis.org

1, 3, 4, 10, 10, 22, 28, 64, 76, 180, 260, 606, 932, 2124, 3440, 7666, 12872, 28178, 48620, 104946, 184756, 394638, 705432, 1494600, 2704156, 5693376, 10400600
Offset: 2

Views

Author

N. J. A. Sloane, Jun 06 2013

Keywords

Comments

See Erickson-Ruskey for precise definition. The polynomials P_n(x) are described as "mysterious".

Crossrefs

Showing 1-2 of 2 results.