cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226305 Numerator of Product_{d|n} b(d)^Moebius(n/d), where b() = A100371().

Original entry on oeis.org

1, 1, 3, 3, 15, 1, 63, 5, 21, 1, 1023, 5, 4095, 1, 17, 17, 65535, 1, 262143, 17, 65, 1, 4194303, 17, 69905, 1, 4161, 65, 268435455, 1, 1073741823, 257, 1025, 1, 53261, 13, 68719476735, 1, 4097, 257, 1099511627775, 1, 4398046511103, 1025, 3133, 1, 70368744177663, 257, 69810262081, 1, 65537, 4097
Offset: 1

Views

Author

N. J. A. Sloane, Jun 07 2013

Keywords

Examples

			1, 1, 3, 3, 15, 1, 63, 5, 21, 1, 1023, 5/3, 4095, 1, 17/3, 17, 65535, 1, 262143, 17/3, 65/3, 1, 4194303, 17/5, 69905, 1, 4161, 65/3, 268435455, 1, 1073741823, 257, 1025/3, 1, 53261/3, 13, ...
		

Crossrefs

Programs

  • Maple
    f:=proc(a,M) local n,b,d,t1,t2;
    b:=[];
    for n from 1 to M do
    t1:=divisors(n);
    t2:=mul(a[d]^mobius(n/d), d in t1);
    b:=[op(b),t2];
    od;
    b;
    end;
    a:=[seq(2^phi(n)-1,n=1..100)];
    f(a,100);
  • Mathematica
    Table[Numerator[Product[(2^EulerPhi[d] - 1)^MoebiusMu[n/d], {d, Divisors[n]}]], {n, 100}] (* Indranil Ghosh, Apr 14 2017 *)
  • Python
    from sympy import divisors, totient, mobius, prod
    def a(n): return prod((2**totient(d) - 1)**mobius(n//d) for d in divisors(n)).numerator
    print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Apr 14 2017