A226305 Numerator of Product_{d|n} b(d)^Moebius(n/d), where b() = A100371().
1, 1, 3, 3, 15, 1, 63, 5, 21, 1, 1023, 5, 4095, 1, 17, 17, 65535, 1, 262143, 17, 65, 1, 4194303, 17, 69905, 1, 4161, 65, 268435455, 1, 1073741823, 257, 1025, 1, 53261, 13, 68719476735, 1, 4097, 257, 1099511627775, 1, 4398046511103, 1025, 3133, 1, 70368744177663, 257, 69810262081, 1, 65537, 4097
Offset: 1
Examples
1, 1, 3, 3, 15, 1, 63, 5, 21, 1, 1023, 5/3, 4095, 1, 17/3, 17, 65535, 1, 262143, 17/3, 65/3, 1, 4194303, 17/5, 69905, 1, 4161, 65/3, 268435455, 1, 1073741823, 257, 1025/3, 1, 53261/3, 13, ...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- N. Bliss, B. Fulan, S. Lovett, and J. Sommars, Strong Divisibility, Cyclotomic Polynomials, and Iterated Polynomials, Amer. Math. Monthly, 120 (2013), 519-536.
Programs
-
Maple
f:=proc(a,M) local n,b,d,t1,t2; b:=[]; for n from 1 to M do t1:=divisors(n); t2:=mul(a[d]^mobius(n/d), d in t1); b:=[op(b),t2]; od; b; end; a:=[seq(2^phi(n)-1,n=1..100)]; f(a,100);
-
Mathematica
Table[Numerator[Product[(2^EulerPhi[d] - 1)^MoebiusMu[n/d], {d, Divisors[n]}]], {n, 100}] (* Indranil Ghosh, Apr 14 2017 *)
-
Python
from sympy import divisors, totient, mobius, prod def a(n): return prod((2**totient(d) - 1)**mobius(n//d) for d in divisors(n)).numerator print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Apr 14 2017