A226314 Triangle read by rows: T(i,j) = j+(i-j)/gcd(i,j) (1<=i<=j).
1, 1, 2, 1, 2, 3, 1, 3, 3, 4, 1, 2, 3, 4, 5, 1, 4, 5, 5, 5, 6, 1, 2, 3, 4, 5, 6, 7, 1, 5, 3, 7, 5, 7, 7, 8, 1, 2, 7, 4, 5, 8, 7, 8, 9, 1, 6, 3, 7, 9, 8, 7, 9, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 1, 7, 9, 10, 5, 11, 7, 11, 11, 11, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 1, 8, 3, 9, 5, 10, 13, 11, 9, 12, 11, 13, 13, 14
Offset: 1
Examples
Triangle begins: [1] [1, 2] [1, 2, 3] [1, 3, 3, 4] [1, 2, 3, 4, 5] [1, 4, 5, 5, 5, 6] [1, 2, 3, 4, 5, 6, 7] [1, 5, 3, 7, 5, 7, 7, 8] [1, 2, 7, 4, 5, 8, 7, 8, 9] [1, 6, 3, 7, 9, 8, 7, 9, 9, 10] ... The resulting triangle of fractions begins: 1, 1/2, 2, 1/3, 2/3, 3, 1/4, 3/2, 3/4, 4, 1/5, 2/5, 3/5, 4/5, 5, ...
Links
- Reinhard Zumkeller, Rows n = 1..120 of triangle, flattened
- Lance Fortnow, Counting the Rationals Quickly, Computational Complexity Weblog, Monday, March 01, 2004.
- Yoram Sagher, Counting the rationals, Amer. Math. Monthly, 96 (1989), p. 823. Math. Rev. 90i:04001.
Programs
-
Haskell
a226314 n k = n - (n - k) `div` gcd n k a226314_row n = a226314_tabl !! (n-1) a226314_tabl = map f $ tail a002262_tabl where f us'@(_:us) = map (v -) $ zipWith div vs (map (gcd v) us) where (v:vs) = reverse us' -- Reinhard Zumkeller, Jun 10 2013
-
Maple
f:=(i,j) -> j+(i-j)/gcd(i,j); g:=n->[seq(f(i,n),i=1..n)]; for n from 1 to 20 do lprint(g(n)); od:
Comments