A226317 Decimal expansion of the constant of Theodorus.
1, 8, 6, 0, 0, 2, 5, 0, 7, 9, 2, 2, 1, 1, 9, 0, 3, 0, 7, 1, 8, 0, 6, 9, 5, 9, 1, 5, 7, 1, 7, 1, 4, 3, 3, 2, 4, 6, 6, 6, 5, 2, 4, 1, 2, 1, 5, 2, 3, 4, 5, 1, 4, 9, 3, 0, 4, 9, 1, 9, 9, 5, 0, 3, 5, 9, 8, 3, 4, 2, 7, 2, 3, 3, 9, 9, 9, 2, 1, 3, 2, 0, 5, 6, 8, 8, 3, 8, 7, 5, 6, 4, 9, 9, 6, 1, 4, 4, 9, 5
Offset: 1
Examples
1.86002507922119030718069591571714332466652412152345149304919950359788...
References
- Philip J. Davis, Spirals: From Theodorus to Chaos, AK Peters, 1993.
- Julian R. Havil, The Irrationals: A Story of the Numbers You Can't Count On, Princeton University Press, Princeton NJ, 2012, page 277.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..1024
- David Brink, The spiral of Theodorus and sums of zeta-values at the half-integers, The American Mathematical Monthly, Vol. 119, No. 9 (November 2012), pp. 779-786.
- Ewan Brinkman, Robert Corless, and Veselin Jungic, The Theodorus Variation, Maple Transactions, Vol. 1, No. 2 (2021), Article 14500.
- Steven Finch, Constant of Theodorus [broken link. Probably removed from CiteSeerX]
- Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 663.
- Walter Gautschi, Purdue University, The Spiral of Theodorus, Numerical Analysis, and Special Functions.
- Kevin Ryde, Math-PlanePath, Theodorus Spiral.
- Jörg Waldvogel, Analytic Continuation of the Theodorus Spiral, Seminar für Angewandte Mathematik, ETH Zürich, 2008.
- Eric Weisstein's World of Mathematics, Theodorus's Constant.
Programs
-
Maple
Digits := 102: evalf(sum((k^(3/2) + k^(1/2))^(-1), k=1..infinity)); # Peter Luschny, Feb 28 2022
-
Mathematica
digits = 100; 2/Sqrt[Pi]*NIntegrate[(-Exp[t^2])*Log[1 - Exp[-t^2]] - 1, {t, 0, Infinity}, WorkingPrecision -> digits] // RealDigits[#, 10, digits]& // First (* or *) a = NSum[1/(k^(3/2) + k^(1/2)), {k, 1, Infinity}, AccuracyGoal -> 2^8, PrecisionGoal -> 2^8, WorkingPrecision -> 2^8, NSumTerms -> 2^15]; RealDigits[a, 10, 105][[1]]
-
PARI
sumpos(k=1,1/sqrt(k)/(1+k)) \\ Charles R Greathouse IV, Aug 29 2013
-
PARI
sumalt(k=0,zeta(k+3/2)*(-1)^k) \\ Charles R Greathouse IV, Aug 29 2013
Formula
Sum_{k>=1} 1/(k^(3/2) + k^(1/2)).
Equals -(2/sqrt(Pi)) * Integral_{x>=0} (exp(x^2)*log(1-exp(-x^2))+1) dx (Waldvogel, 2008). - Amiram Eldar, Jul 19 2022
Comments