cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226317 Decimal expansion of the constant of Theodorus.

Original entry on oeis.org

1, 8, 6, 0, 0, 2, 5, 0, 7, 9, 2, 2, 1, 1, 9, 0, 3, 0, 7, 1, 8, 0, 6, 9, 5, 9, 1, 5, 7, 1, 7, 1, 4, 3, 3, 2, 4, 6, 6, 6, 5, 2, 4, 1, 2, 1, 5, 2, 3, 4, 5, 1, 4, 9, 3, 0, 4, 9, 1, 9, 9, 5, 0, 3, 5, 9, 8, 3, 4, 2, 7, 2, 3, 3, 9, 9, 9, 2, 1, 3, 2, 0, 5, 6, 8, 8, 3, 8, 7, 5, 6, 4, 9, 9, 6, 1, 4, 4, 9, 5
Offset: 1

Views

Author

Walter Gautschi (wxg(AT)cs.purdue.edu), Robert G. Wilson v, and Jean-François Alcover, Apr 15 2013

Keywords

Comments

The decimal expansion of the Sum {k>=1} 1/(k^(3/2) + k^(1/2)).
This constant was first identified by Professor Philip J. Davis.
This constant is not in Steven R. Finch, Mathematical Constants, Cambridge, 2003, nor is it in the Inverse Symbolic Calculator (originally by Simon Plouffe & the Borwein brothers).

Examples

			1.86002507922119030718069591571714332466652412152345149304919950359788...
		

References

  • Philip J. Davis, Spirals: From Theodorus to Chaos, AK Peters, 1993.
  • Julian R. Havil, The Irrationals: A Story of the Numbers You Can't Count On, Princeton University Press, Princeton NJ, 2012, page 277.

Crossrefs

Programs

  • Maple
    Digits := 102: evalf(sum((k^(3/2) + k^(1/2))^(-1), k=1..infinity));
    # Peter Luschny, Feb 28 2022
  • Mathematica
    digits = 100; 2/Sqrt[Pi]*NIntegrate[(-Exp[t^2])*Log[1 - Exp[-t^2]] - 1, {t, 0, Infinity}, WorkingPrecision -> digits] // RealDigits[#, 10, digits]& // First
    (* or *)
    a = NSum[1/(k^(3/2) + k^(1/2)), {k, 1, Infinity}, AccuracyGoal -> 2^8, PrecisionGoal -> 2^8, WorkingPrecision -> 2^8, NSumTerms -> 2^15]; RealDigits[a, 10, 105][[1]]
  • PARI
    sumpos(k=1,1/sqrt(k)/(1+k)) \\ Charles R Greathouse IV, Aug 29 2013
    
  • PARI
    sumalt(k=0,zeta(k+3/2)*(-1)^k) \\ Charles R Greathouse IV, Aug 29 2013

Formula

Sum_{k>=1} 1/(k^(3/2) + k^(1/2)).
Equals -(2/sqrt(Pi)) * Integral_{x>=0} (exp(x^2)*log(1-exp(-x^2))+1) dx (Waldvogel, 2008). - Amiram Eldar, Jul 19 2022