cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A371331 Decimal expansion of Sum_{k>=1} 1/(k^(1/3)*(1+k)).

Original entry on oeis.org

2, 7, 9, 0, 0, 1, 8, 2, 9, 3, 0, 9, 7, 1, 5, 3, 3, 2, 9, 9, 3, 3, 5, 6, 2, 7, 6, 2, 2, 0, 5, 3, 8, 7, 3, 4, 9, 5, 6, 2, 9, 3, 7, 3, 1, 5, 8, 4, 8, 4, 9, 2, 2, 4, 4, 1, 2, 4, 0, 0, 5, 8, 3, 8, 9, 2, 0, 8, 4, 6, 9, 0, 9, 0, 1, 0, 9, 4, 5, 4, 5, 3, 7, 7, 5, 8, 6, 1, 9, 2, 0
Offset: 1

Views

Author

R. J. Mathar, Mar 19 2024

Keywords

Examples

			2.790018293097153329933562762205...
		

Crossrefs

Cf. A226317 (for k^1/2), A371332 (k^1/4), A371333 (k^1/5).

Programs

Formula

Equals Sum_{i>=0} (-1)^i*zeta(4/3+i).

A371332 Decimal expansion of Sum_{k>=1} 1/(k^(1/4)*(1+k)).

Original entry on oeis.org

3, 7, 4, 7, 8, 3, 4, 7, 4, 3, 8, 4, 4, 8, 8, 7, 5, 7, 7, 8, 8, 8, 0, 5, 4, 6, 3, 5, 8, 9, 7, 6, 9, 3, 7, 6, 6, 7, 1, 1, 4, 8, 7, 3, 3, 2, 7, 7, 7, 3, 0, 0, 8, 8, 7, 7, 9, 4, 5, 2, 9, 5, 6, 9, 2, 5, 5, 5, 4, 7, 4, 0, 7, 1, 2, 3, 4, 7, 3, 7, 6, 1, 1, 8, 8, 7, 1, 5, 2, 1, 5
Offset: 1

Views

Author

R. J. Mathar, Mar 19 2024

Keywords

Examples

			3.7478347438448875778880546...
		

Crossrefs

Cf. A226317 (for k^1/2), A371331 (k^1/3), A371333 (k^1/5).

Programs

Formula

Equals Sum_{i>=0} (-1)^i*zeta(5/4+i).

A371333 Decimal expansion of Sum_{k>=1} 1/(k^(1/5)*(1+k)).

Original entry on oeis.org

4, 7, 1, 9, 6, 1, 7, 5, 3, 8, 1, 6, 2, 6, 1, 4, 4, 8, 3, 6, 0, 5, 7, 8, 2, 7, 2, 4, 0, 0, 1, 3, 2, 3, 1, 1, 5, 4, 7, 5, 7, 1, 0, 5, 1, 1, 1, 9, 8, 2, 8, 4, 3, 7, 6, 6, 2, 1, 0, 8, 2, 5, 8, 5, 7, 0, 6, 2, 6, 4, 8, 6, 1, 3, 9, 2, 3, 1, 0, 8, 9, 1, 9, 0, 9, 4, 9, 2, 2, 2, 0
Offset: 1

Views

Author

R. J. Mathar, Mar 19 2024

Keywords

Examples

			4.71961753816261448360578272400...
		

Crossrefs

Cf. A226317 (for k^1/2), A371331 (k^1/3), A371332 (k^1/4).

Programs

Formula

Equals Sum_{i>=0} (-1)^i*zeta(6/5+i).

A234014 Decimal expansion of Sum_{x>=2} 1/((x - 1) sqrt(x)) = Sum_{k>=1} (zeta(k+1/2) - 1).

Original entry on oeis.org

2, 1, 8, 4, 0, 0, 9, 4, 7, 0, 2, 6, 7, 8, 5, 1, 9, 5, 2, 8, 9, 4, 7, 3, 4, 1, 5, 7, 8, 5, 2, 9, 4, 9, 0, 7, 0, 4, 4, 3, 9, 0, 8, 4, 0, 6, 2, 6, 3, 2, 2, 9, 4, 2, 0, 2, 0, 0, 2, 5, 1, 2, 0, 7, 9, 2, 8, 3, 5, 4, 9, 0, 3, 1, 1, 2, 7, 4, 0, 2, 9, 5, 3, 9, 0, 6, 9, 7, 4, 1, 8, 4, 6, 1, 3, 4, 1, 6, 1, 9, 7, 2, 3, 0, 7
Offset: 1

Views

Author

David Brink and Robert G. Wilson v, Dec 18 2013

Keywords

Examples

			2.184009470267851952894734157852949070443908406263229420200251207928354...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ Sum[ Zeta[k + 1/2] - 1, {k, 1, 355}], 10, 111][[1]]
  • PARI
    sum(k=1,340,zeta(k+1/2)-1)

A234015 K' (K being A105459) = Sum_{k>=0} (Zeta(k+1/2)-1)/(2k+1), negated.

Original entry on oeis.org

1, 8, 2, 6, 5, 0, 7, 8, 1, 0, 8, 5, 8, 4, 7, 8, 5, 5, 8, 8, 1, 5, 7, 6, 5, 4, 0, 6, 1, 3, 0, 3, 2, 1, 9, 7, 3, 0, 9, 9, 4, 9, 1, 4, 8, 4, 9, 4, 3, 4, 9, 0, 6, 6, 8, 3, 2, 2, 9, 0, 1, 3, 6, 3, 7, 7, 6, 4, 9, 9, 2, 7, 1, 8, 3, 8, 7, 3, 5, 8, 4, 6, 4, 7, 9, 7, 3, 1, 3, 6, 2, 1, 5, 8, 3, 2, 8, 9, 9, 4, 2, 0, 4, 7, 1
Offset: 1

Views

Author

David Brink and Robert G. Wilson v, Dec 18 2013

Keywords

Examples

			1.8265078108584785588157654061303219730994914849434906683229013637764992...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ Sum[ (Zeta[k + 1/2] - 1)/(2 k + 1), {k, 0, 370}], 10,  111][[1]]
  • PARI
    sum(k=0,340,(zeta(k+1/2)-1)/(2*k+1))
Showing 1-5 of 5 results.