cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226326 a(n) = smallest k such that prime(n) is the n-th largest divisor of k.

Original entry on oeis.org

2, 6, 20, 42, 154, 156, 306, 836, 552, 1044, 1488, 2960, 2460, 3870, 7050, 12084, 8496, 10248, 14070, 12780, 18396, 31284, 50796, 38448, 55872, 82416, 37080, 51360, 65400, 88140, 146304, 169776, 123300, 133440, 150192, 181200, 131880, 176040, 260520, 326970
Offset: 1

Views

Author

Irina Gerasimova, Jun 04 2013

Keywords

Examples

			a(5) = 165 because the divisors of 165 are (165, 55, 33, 15, 11, 5, 3, 1) and prime(5) = 11 is the 5th divisor of 165.
		

Crossrefs

Cf. A225562.

Programs

  • Maple
    with(numtheory):
    a:= proc(n) local k, p; p:= ithprime(n);
          for k from p by p while tau(k)`)[n]<>p do od; k
        end:
    seq(a(n), n=1..50);  # Alois P. Heinz, Jun 04 2013
  • Mathematica
    a[n_] := Module[{k, p}, p = Prime[n]; For[k = p, DivisorSigma[0, k] < n || Reverse[Divisors[k]][[n]] != p, k = k + p]; k];
    Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Mar 25 2017, after Alois P. Heinz *)
  • PARI
    a(n)=my(p=prime(n),k,d);while(k+=p, d=divisors(k); if(#d>=n && d[#d-n+1]==p, return(k))) \\ Charles R Greathouse IV, Jun 04 2013

Extensions

a(5) corrected, a(6)-a(40) from Charles R Greathouse IV, Jun 04 2013