A226392 Triangle with first column identical to 1 and the other entries defined by the sum of entries above and to the left.
1, 1, 1, 1, 2, 3, 1, 4, 8, 13, 1, 8, 20, 42, 71, 1, 16, 48, 120, 256, 441, 1, 32, 112, 320, 792, 1698, 2955, 1, 64, 256, 816, 2256, 5532, 11880, 20805, 1, 128, 576, 2016, 6096, 16488, 40140, 86250, 151695, 1, 256, 1280, 4864, 15872, 46432, 123680
Offset: 0
Examples
T(3,2) = 8 = 3 (above) +1+4 (to the left). 1; 1,1; 1,2,3; 1,4,8,13; 1,8,20,42,71; 1,16,48,120,256,441; 1,32,112,320,792,1698,2955; 1,64,256,816,2256,5532,11880,20805;
Programs
-
Maple
A226392 := proc(n,k) option remember; if k = 0 then 1; elif k > n or k < 0 then 0 ; else add( procname(n,c),c=0..k-1) + add( procname(r,k),r=k..n-1) ; end if; end proc:
-
Mathematica
t[, 0] = 1; t[n, k_] := t[n, k] = Sum[t[n, c], {c, 0, k-1}] + Sum[t[r, k], {r, k, n-1}]; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 10 2014 *)
Formula
Definition: T(n,0)=1. T(n,k) = sum_{0<=c0.
T(n,3) = 6*T(n-1,3) -12*T(n-2,3)+8*T(n-3,3). T(n,3) = 2^n*(n+10)*(n-1)/16.
T(n,4) = 8*T(n-1,4) -24*T(n-2,4) +32*T(n-3,4) -16*T(n-4,4); T(n,4) = 2^n*(n^2/4 +65*n/96 -47/16 +n^3/96).
For 10, T(n,n) = 2*T(n,n-1) - T(n-1,n-1). - Max Alekseyev, Feb 04 2021
Comments