cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226392 Triangle with first column identical to 1 and the other entries defined by the sum of entries above and to the left.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 4, 8, 13, 1, 8, 20, 42, 71, 1, 16, 48, 120, 256, 441, 1, 32, 112, 320, 792, 1698, 2955, 1, 64, 256, 816, 2256, 5532, 11880, 20805, 1, 128, 576, 2016, 6096, 16488, 40140, 86250, 151695, 1, 256, 1280, 4864, 15872, 46432, 123680
Offset: 0

Views

Author

R. J. Mathar, Jun 06 2013

Keywords

Comments

The sequence of row sums s(n) starts at n=0 as 1, 2, 6, 26, 142, 882, 5910, 41610, 303390,... and satisfies the hypergeometric recurrence n*s(n) +2*(7-5*n)*s(n-1) +9*(n-2)*s(n-2)=0.
For n>0, s(n) = 2*T(n,n) = 2*A162326(n). - Max Alekseyev, Feb 04 2021

Examples

			T(3,2) = 8 = 3 (above) +1+4 (to the left).
1;
1,1;
1,2,3;
1,4,8,13;
1,8,20,42,71;
1,16,48,120,256,441;
1,32,112,320,792,1698,2955;
1,64,256,816,2256,5532,11880,20805;
		

Crossrefs

Cf. A162326 (diagonal), A000079 (column k=1), A001792 (column k=2).

Programs

  • Maple
    A226392 := proc(n,k)
        option remember;
        if k = 0 then
            1;
        elif k > n or k < 0 then
            0 ;
        else
            add( procname(n,c),c=0..k-1) + add( procname(r,k),r=k..n-1) ;
        end if;
    end proc:
  • Mathematica
    t[, 0] = 1; t[n, k_] := t[n, k] = Sum[t[n, c], {c, 0, k-1}] + Sum[t[r, k], {r, k, n-1}]; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 10 2014 *)

Formula

Definition: T(n,0)=1. T(n,k) = sum_{0<=c0.
T(n,3) = 6*T(n-1,3) -12*T(n-2,3)+8*T(n-3,3). T(n,3) = 2^n*(n+10)*(n-1)/16.
T(n,4) = 8*T(n-1,4) -24*T(n-2,4) +32*T(n-3,4) -16*T(n-4,4); T(n,4) = 2^n*(n^2/4 +65*n/96 -47/16 +n^3/96).
For 10, T(n,n) = 2*T(n,n-1) - T(n-1,n-1). - Max Alekseyev, Feb 04 2021