A226430 The number of simple permutations of length n which avoid 1243 and 2431.
1, 2, 0, 2, 4, 10, 21, 44, 89, 178, 352, 692, 1355, 2648, 5171, 10100, 19744, 38646, 75761, 148772, 292653, 576678, 1138240, 2250152, 4454679, 8830640, 17525991, 34820264, 69244864, 137815978, 274487517, 547035452, 1090790465, 2176043098, 4342753696, 8669805020, 17313228899
Offset: 1
Keywords
Links
- Jay Pantone, The Enumeration of Permutations Avoiding 3124 and 4312, arXiv:1309.0832 [math.CO], (2013)
- Wikipedia, Permutation classes avoiding two patterns of length 4
- Index entries for linear recurrences with constant coefficients, signature (4,-3,-4,3,2).
Crossrefs
The number of all permutations which avoid 1243 and 2431 is A165534.
Programs
-
Mathematica
Join[{1, 2}, LinearRecurrence[{4, -3, -4, 3, 2}, {0, 2, 4, 10, 21}, 40]] (* Jean-François Alcover, Jul 22 2018 *)
-
PARI
x='x+O('x^66); Vec((x-2*x^2-5*x^3+12*x^4+x^5-8*x^6-3*x^7)/((1-2*x)*(1-x-x^2)^2)) \\ Joerg Arndt, Jun 19 2013
Formula
G.f.: (x-2*x^2-5*x^3+12*x^4+x^5-8*x^6-3*x^7)/((1-2*x)*(1-x-x^2)^2).