cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A165534 Number of permutations of length n that avoid the patterns 1243 and 2431.

Original entry on oeis.org

1, 2, 6, 22, 88, 363, 1507, 6241, 25721, 105485, 430767, 1752945, 7113095, 28797292, 116368938, 469531170, 1892133076, 7617145998, 30638026074, 123145086046, 494663313342, 1985995240464, 7969941119476, 31971818819844, 128214549263032, 514024475597524, 2060262910065740, 8255954041620260
Offset: 1

Views

Author

Vincent Vatter, Sep 21 2009

Keywords

Comments

These permutations have an enumeration scheme of depth 5.

Examples

			There are 22 permutations of length 4 which avoid these two patterns, so a(4)=22.
		

Crossrefs

The simple permutations in this class are given by A226430.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!(-(8*x^4 -7*x^3 +x^2 +Sqrt(-4*x+1)*(4*x^4 -9*x^3 +9*x^2 -2*x))/(12*x^4 - 31*x^3+27*x^2 +Sqrt(-4*x+1)*(4*x^4-13*x^3+15*x^2-7*x+1) -9*x +1))); // G. C. Greubel, Oct 22 2018
  • Mathematica
    CoefficientList[Series[-(1 / x) (8 x^4 - 7 x^3 + x^2 + Sqrt[-4 x + 1] (4 x^4 - 9 x^3 + 9 x^2 - 2 x)) / (12 x^4 - 31 x^3 + 27 x^2 + Sqrt[-4 x + 1] (4 x^4 - 13 x^3 + 15 x^2 - 7 x + 1) - 9 x + 1), {x, 0, 30}], x] (* Vincenzo Librandi, Sep 10 2013 *)
  • PARI
    x='x+O('x^30); Vec(-(8*x^4-7*x^3+x^2 +sqrt(-4*x+1)*(4*x^4 -9*x^3 +9*x^2-2*x))/(12*x^4-31*x^3+27*x^2 +sqrt(-4*x+1)*(4*x^4-13*x^3 +15*x^2 -7*x +1) -9*x +1)) \\ G. C. Greubel, Oct 22 2018
    

Formula

G.f.: -(8*x^4 - 7*x^3 + x^2 + sqrt(-4*x + 1)*(4*x^4 - 9*x^3 + 9*x^2 - 2*x))/(12*x^4 - 31*x^3 + 27*x^2 + sqrt(-4*x + 1)*(4*x^4 - 13*x^3 + 15*x^2 - 7*x + 1) - 9*x + 1). - Jay Pantone, Sep 08 2013
Recurrence (for n>5): (n-5)*(n+2)*(n^3 - 69*n^2 + 434*n - 756)*a(n) = 2*(5*n^5 - 363*n^4 + 3509*n^3 - 11217*n^2 + 8006*n + 11760)*a(n-1) - 3*(11*n^5 - 804*n^4 + 8357*n^3 - 32556*n^2 + 50672*n - 21000)*a(n-2) + 2*(20*n^5 - 1467*n^4 + 15806*n^3 - 66753*n^2 + 123854*n - 83160)*a(n-3) - 8*(n-4)*(2*n-7)*(n^3 - 66*n^2 + 299*n - 390)*a(n-4). - Vaclav Kotesovec, Sep 09 2013
a(n) ~ 4^n/9 * (1+1/sqrt(Pi*n)). - Vaclav Kotesovec, Sep 09 2013

Extensions

More terms from Jay Pantone, Sep 08 2013
Showing 1-1 of 1 results.