cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A228769 The number of skew sum decomposable permutations which avoid the patterns 3124 and 4312.

Original entry on oeis.org

0, 1, 3, 10, 35, 129, 494, 1935, 7670, 30582, 122280, 489552, 1960956, 7855994, 31471731, 126063782, 504888839, 2021777865, 8094784697, 32405289263, 129709206465, 519129580361, 2077477804103, 8313000733125, 33261722967167, 133076495664483, 532391828669675, 2129796460981743, 8519701993370619, 34079469569317323
Offset: 1

Views

Author

Jay Pantone, Sep 08 2013

Keywords

Examples

			Example: a(4)=10 because there are 10 skew sum decomposable permutations of length 4 which avoid the patterns 3124 and 4312.
		

Crossrefs

The class of all permutations which avoid the patterns 3124 and 4312 is given by A165534.

Programs

  • Mathematica
    CoefficientList[Series[- (1/x) (3 x^4 - x^3 + Sqrt[-4 x + 1] (4 x^5 - 9 x^4 + 9 x^3 - 2 x^2)) / (12 x^4 - 31 x^3 + 27 x^2 + Sqrt[-4 x + 1] (4 x^4 - 13 x^3 + 15 x^2 - 7 x + 1) - 9 x + 1), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 09 2013 *)

Formula

G.f.: -(3*x^4 - x^3 + sqrt(-4*x + 1)*(4*x^5 - 9*x^4 + 9*x^3 - 2*x^2))/(12*x^4 - 31*x^3 + 27*x^2 + sqrt(-4*x + 1)*(4*x^4 - 13*x^3 + 15*x^2 - 7*x + 1) - 9*x + 1).
a(n) ~ 4^(n-1)/9 * (1 + 1/sqrt(Pi*n)). - Vaclav Kotesovec, Mar 18 2014

A226430 The number of simple permutations of length n which avoid 1243 and 2431.

Original entry on oeis.org

1, 2, 0, 2, 4, 10, 21, 44, 89, 178, 352, 692, 1355, 2648, 5171, 10100, 19744, 38646, 75761, 148772, 292653, 576678, 1138240, 2250152, 4454679, 8830640, 17525991, 34820264, 69244864, 137815978, 274487517, 547035452, 1090790465, 2176043098, 4342753696, 8669805020, 17313228899
Offset: 1

Views

Author

Jay Pantone, Jun 06 2013

Keywords

Crossrefs

The number of all permutations which avoid 1243 and 2431 is A165534.

Programs

  • Mathematica
    Join[{1, 2}, LinearRecurrence[{4, -3, -4, 3, 2}, {0, 2, 4, 10, 21}, 40]] (* Jean-François Alcover, Jul 22 2018 *)
  • PARI
    x='x+O('x^66); Vec((x-2*x^2-5*x^3+12*x^4+x^5-8*x^6-3*x^7)/((1-2*x)*(1-x-x^2)^2)) \\ Joerg Arndt, Jun 19 2013

Formula

G.f.: (x-2*x^2-5*x^3+12*x^4+x^5-8*x^6-3*x^7)/((1-2*x)*(1-x-x^2)^2).
a(n) = -2*A000045(n+1) +A191830(n+2) +2^(n-3), n>2. - R. J. Mathar, Dec 06 2013

A228770 The number of sum indecomposable permutations which avoid the patterns 3124 and 4312.

Original entry on oeis.org

1, 1, 3, 12, 51, 217, 912, 3785, 15554, 63458, 257566, 1041548, 4200462, 16906262, 67943341, 272740788, 1093881967, 4384217569, 17562176283, 70319782015, 281466691159, 1126304935761, 4505961410365, 18023526090613, 72082118816829, 288245594631227, 1152536796877409, 4607992736095739, 18422141293792669, 73645313049839723
Offset: 1

Views

Author

Jay Pantone, Sep 08 2013

Keywords

Examples

			Example: a(4)=12 because there are 12 sum indecomposable permutations of length 4 which avoid the patterns 3124 and 4312.
		

Crossrefs

A228770(n) = A165534(n) - A226434(n)

Programs

  • Mathematica
    CoefficientList[Series[- (1/x) (24 x^6 - 71 x^5 + 84 x^4 - 45 x^3 + 11 x^2 + Sqrt[-4 x + 1] (4 x^6 - 25 x^5 + 40 x^4 - 29 x^3 + 9 x^2 - x) - x) / (8 x^6 - 54 x^5 + 117 x^4 - 114 x^3 + 54 x^2 - Sqrt[-4 x + 1] (12 x^5 - 43 x^4 + 58 x^3 - 36 x^2 + 10 x - 1) - 12 x + 1), {x, 0, 30}], x] (* Vincenzo Librandi, Sep 09 2013 *)

Formula

G.f.: -(24*x^6 - 71*x^5 + 84*x^4 - 45*x^3 + 11*x^2 + sqrt(-4*x + 1)*(4*x^6 - 25*x^5 + 40*x^4 - 29*x^3 + 9*x^2 - x) - x)/(8*x^6 - 54*x^5 + 117*x^4 - 114*x^3 + 54*x^2 - sqrt(-4*x + 1)*(12*x^5 - 43*x^4 + 58*x^3 - 36*x^2 + 10*x - 1) - 12*x + 1).
a(n) ~ 2^(2*n-1)/9 * (1+2/(sqrt(Pi*n))). - Vaclav Kotesovec, Mar 20 2014
Conjecture: -(n+1)*(39961*n-2474598)*a(n) +(-39961*n^2-25975201*n+4949196) *a(n-1) +3*(1460811*n^2+27429105*n-41310802) *a(n-2) +3 *(-8653921*n^2-4750029*n+74360724) *a(n-3) +4*(15005713*n^2-82481258*n+83094771) *a(n-4) +12*(-4937548*n^2+40726604*n-73155719) *a(n-5) +16*(652718*n-2110173)*(2*n-13) *a(n-6)=0. - R. J. Mathar, Jun 14 2016

A228771 The number of skew sum indecomposable permutations which avoid the patterns 3124 and 4312.

Original entry on oeis.org

1, 1, 3, 12, 53, 234, 1013, 4306, 18051, 74903, 308487, 1263393, 5152139, 20941298, 84897207, 343467388, 1387244237, 5595368133, 22543241377, 90739796783, 364954106877, 1466865660103, 5892463315373, 23658818086719, 94952826295865, 380947979933041, 1527871081396065, 6126157580638517, 24557525359295337, 98421154766829972
Offset: 1

Views

Author

Jay Pantone, Sep 08 2013

Keywords

Examples

			Example: a(4)=12 because there are 12 skew sum indecomposable permutations of length 4 which avoid the patterns 3124 and 4312.
		

Crossrefs

A228771(n) = A165534(n) - A228769(n)

Programs

  • Mathematica
    CoefficientList[Series[(1/x) (8 x^6 - 28 x^5 + 50 x^4 - 35 x^3 + 10 x^2 - Sqrt[-4 x + 1] (6 x^5 - 18 x^4 + 21 x^3 - 8 x^2 + x) - x) / (8 x^5 - 46 x^4 + 71 x^3 - 43 x^2 - Sqrt[-4 x + 1] (12 x^4 - 31 x^3 + 27 x^2 - 9 x + 1) + 11 x - 1), {x, 0, 30}], x] (* Vincenzo Librandi, Sep 09 2013 *)

Formula

G.f.: (8*x^6 - 28*x^5 + 50*x^4 - 35*x^3 + 10*x^2 - sqrt(-4*x + 1)*(6*x^5 - 18*x^4 + 21*x^3 - 8*x^2 + x) - x)/(8*x^5 - 46*x^4 + 71*x^3 - 43*x^2 - sqrt(-4*x + 1)*(12*x^4 - 31*x^3 + 27*x^2 - 9*x + 1) + 11*x - 1).
a(n) ~ 4^(n-1)/3 * (1+1/sqrt(Pi*n)). - Vaclav Kotesovec, Mar 20 2014
Conjecture: -163*(n+2)*(4*n-413) *a(n) +(-652*n^2-725425*n-452889) *a(n-1) +5*(14473*n^2+512276*n-443094) *a(n-2) +(-410045*n^2-2408964*n+8429009) *a(n-3) +2*(404156*n^2-1297075*n-1518084)*a(n-4) -8*(29333*n-32490)*(2*n-11)*a(n-5)=0. - R. J. Mathar, Jun 14 2016

Extensions

Corrected a(17) by Vincenzo Librandi, Sep 09 2013
Showing 1-4 of 4 results.