A226471 Numbers n such that n^2 XOR triangular(n) is a triangular number. XOR is the bitwise logical exclusive-or operator.
0, 1, 3, 7, 15, 25, 31, 63, 113, 127, 189, 200, 255, 381, 481, 499, 511, 765, 1004, 1011, 1023, 1533, 1785, 1808, 1985, 2023, 2035, 2047, 3069, 3199, 3255, 3577, 3810, 4071, 4083, 4095, 4446, 6141, 6399, 7161, 8065, 8135, 8167, 8179, 8191, 12285, 12799, 14279, 14280
Offset: 1
Programs
-
Mathematica
Select[Range[0,15000],OddQ[Sqrt[8*BitXor[#^2,(#(#+1))/2]+1]]&] (* Harvey P. Dale, Jul 22 2024 *)
-
Python
import math for n in range(100000000): a = (n*n) ^ (n*(n+1)//2) r = int(math.sqrt(a*2)) if r*(r+1)==a*2: print(n, end=', ')
Comments