A226476 Numbers n with the property that, if tau(n) = k = number of divisors of n, and the d(i) are the divisors [arranged in increasing order], then the sum 1/d(k) + 1/d(k-1) + 1/d(k-2) + ... + 1/d(q) is an integer for some q.
1, 6, 24, 28, 120, 496, 672, 2016, 4320, 4680, 8128, 8190, 26208, 30240, 32760, 42336, 45864, 392448, 523776, 714240, 1571328, 2178540, 8910720, 17428320, 20427264, 23569920, 29795040, 33550336, 34369920, 45532800, 61900800
Offset: 1
Keywords
Examples
24 is in the sequence because the divisors of 24 are 1, 2, 3, 4, 6, 8, 12, 24, and the sum 1/24 + 1/12 + 1/8 + 1/6 + 1/4 + 1/3 = 1. 28 is in the sequence because 28 is a multiply-perfect number: the divisors are 1, 2, 4, 7, 14, 28, and the sum of the reciprocals of all the divisors is 1/28 + 1/14 + 1/7 + 1/4 + 1/2 + 1 = 2.
Programs
-
Maple
with(numtheory): for n from 1 to 10000000 do:x:=divisors(n):n1:=nops(x):s:=0:ii:=0:for q from n1 by -1 to 1 while(ii=0) do:s:=s+1/x[q]:if s=floor(s) then ii:=1: printf(`%d, `,n):else fi:od:od:
Extensions
Edited by Jon E. Schoenfield and N. J. A. Sloane, Sep 09 2017
Comments