cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226502 Let P(k) denote the k-th prime (P(1)=2, P(2)=3 ...); a(n) = P(n+1)P(n+3) - P(n)P(n+2).

Original entry on oeis.org

11, 34, 36, 96, 60, 144, 160, 162, 360, 198, 320, 336, 352, 494, 460, 720, 378, 560, 718, 450, 972, 1020, 938, 1002, 816, 420, 864, 1752, 960, 2596, 810, 2204, 576, 2404, 1220, 1606, 1980, 1694, 1420, 2876, 744, 2694, 780, 3160, 2810, 3520, 3170, 1824, 1840, 1422, 3836
Offset: 1

Views

Author

Ed Smiley, Jun 09 2013

Keywords

Comments

Differences of the products of alternate primes.

Crossrefs

First differences of A090076.

Programs

  • Mathematica
    #[[2]]#[[4]]-#[[1]]#[[3]]&/@Partition[Prime[Range[60]],4,1] (* Harvey P. Dale, Jul 14 2025 *)
  • PARI
    p=2;q=3;r=5;forprime(s=7,1e2,print1(q*s-p*r", ");p=q;q=r;r=s) \\ Charles R Greathouse IV, Jun 10 2013

Formula

a(n) >> n log n and this is probably sharp: on Dickson's conjecture there are infinitely many a(n) < kn log n for any k > 4. The constant 4 comes from 8 + 2 - 6 - 0 n the prime quadruplet (p+0, p+2, p+6, p+8). On Cramér's conjecture a(n) = O(n log^3 n). Unconditionally a(n) << n^1.525 log n. - Charles R Greathouse IV, Jun 10 2013