A226507 4*B(n+4) - (4*n+15)*B(n+3) + (n^2+8*n+9)*B(n+2) - (4*n+3)*B(n+1) + n*B(n), where B(i) are the Bell numbers A000110.
0, 0, 0, 1, 16, 177, 1726, 15912, 143148, 1279939, 11504326, 104686659, 968808308, 9144180028, 88184565504, 869867691833, 8781919559956, 90765497635245, 960434143555986, 10403548856756708, 115336464546432180, 1308260884070774299, 15177980646442995698, 180036437138753006607, 2182526416321158803528
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- B. Chern, P. Diaconis, D. M. Kane, and R. C. Rhoades, Closed expressions for averages of set partition statistics, arXiv:1304.4309 [math.CO], 2013.
Programs
-
Magma
[4*Bell(n+4)-(4*n+15)*Bell(n+3)+(n^2+8*n+9)*Bell(n+2)-(4*n+3)*Bell(n+1)+n*Bell(n): n in [0..30]]; // Vincenzo Librandi, Jul 16 2013
-
Maple
A000110 := proc(n) option remember; if n <= 1 then 1 else add( binomial(n-1, i)*A000110(n-1-i), i=0..n-1); fi; end; B:=A000110; f:=n->4*B(n+4) - (4*n+15)*B(n+3) + (n^2+8*n+9)*B(n+2) - (4*n+3)*B(n+1) + n*B(n); [seq(f(n),n=0..30)];
-
Mathematica
Table[4 BellB[n+4] - (4 n + 15) BellB[n + 3] + (n^2 + 8 n + 9) BellB[n+2] - (4 n + 3) BellB[n+1] + n BellB[n],{n, 0, 30}] (* Vincenzo Librandi, Jul 16 2013 *)
Formula
a(n) ~ n^4 * Bell(n) / LambertW(n)^2 * (1 - 4/LambertW(n) + 4/LambertW(n)^2). - Vaclav Kotesovec, Jul 28 2021