cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226507 4*B(n+4) - (4*n+15)*B(n+3) + (n^2+8*n+9)*B(n+2) - (4*n+3)*B(n+1) + n*B(n), where B(i) are the Bell numbers A000110.

Original entry on oeis.org

0, 0, 0, 1, 16, 177, 1726, 15912, 143148, 1279939, 11504326, 104686659, 968808308, 9144180028, 88184565504, 869867691833, 8781919559956, 90765497635245, 960434143555986, 10403548856756708, 115336464546432180, 1308260884070774299, 15177980646442995698, 180036437138753006607, 2182526416321158803528
Offset: 0

Views

Author

N. J. A. Sloane, Jun 10 2013

Keywords

Crossrefs

Programs

  • Magma
    [4*Bell(n+4)-(4*n+15)*Bell(n+3)+(n^2+8*n+9)*Bell(n+2)-(4*n+3)*Bell(n+1)+n*Bell(n): n in [0..30]]; // Vincenzo Librandi, Jul 16 2013
  • Maple
    A000110 := proc(n) option remember; if n <= 1 then 1 else add( binomial(n-1, i)*A000110(n-1-i), i=0..n-1); fi; end;
    B:=A000110;
    f:=n->4*B(n+4) - (4*n+15)*B(n+3) + (n^2+8*n+9)*B(n+2) - (4*n+3)*B(n+1) + n*B(n);
      [seq(f(n),n=0..30)];
  • Mathematica
    Table[4 BellB[n+4] - (4 n + 15) BellB[n + 3] + (n^2 + 8 n + 9) BellB[n+2] - (4 n + 3) BellB[n+1] + n BellB[n],{n, 0, 30}] (* Vincenzo Librandi, Jul 16 2013 *)

Formula

a(n) ~ n^4 * Bell(n) / LambertW(n)^2 * (1 - 4/LambertW(n) + 4/LambertW(n)^2). - Vaclav Kotesovec, Jul 28 2021