cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A246961 Numerator of the expected number of random moves in Tower of Hanoi problem with n disks starting at a randomly chosen valid configuration and ending with all disks at peg 1.

Original entry on oeis.org

0, 4, 146, 3034, 52916, 857824, 13426406, 206324374, 3138660776, 47471139964, 715573119866, 10765074628114, 161759034582236, 2428929817996504, 36456836245518926, 547058495778290254, 8207730761823753296, 123132640134289171444, 1847139704277091999586, 27708446454015214334794, 415638854666404701309956
Offset: 0

Views

Author

Max Alekseyev, Sep 08 2014

Keywords

Comments

The expected number of random moves is given by a(n)/3^n = a(n)/A000244(n).

Crossrefs

Programs

  • PARI
    concat(0, Vec(-2*x*(135*x^2-9*x-2)/((3*x-1)*(5*x-1)*(9*x-1)*(15*x-1)) + O(x^100))) \\ Colin Barker, Sep 17 2014

Formula

a(n) = ( (3^n - 1)*(5^(n+1) - 2*3^(n+1)) + 5^n - 3^n ) / 4.
a(n) = 3^n*A007798(n) + 2*A134939(n).
G.f.: -2*x*(135*x^2-9*x-2) / ((3*x-1)*(5*x-1)*(9*x-1)*(15*x-1)). - Colin Barker, Sep 17 2014
Showing 1-1 of 1 results.