A226519 Irregular triangle read by rows: T(n,k) = Sum_{i=0..k} Legendre(i,prime(n)).
1, 1, 0, 1, 0, -1, 0, 1, 2, 1, 2, 1, 0, 1, 0, 1, 2, 3, 2, 1, 0, 1, 0, 1, 0, 1, 2, 1, 0, -1, -2, -1, 0, -1, 0, 1, 2, 1, 2, 1, 0, -1, 0, 1, 0, -1, -2, -1, -2, -1, 0, 1, 0, -1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 1, 0, -1, 0, 1, 0, 1, 2, 3, 4, 3, 4, 3, 4, 5, 4, 3, 4, 5, 4, 3, 4, 3, 4, 3, 2, 1, 0
Offset: 1
Examples
Triangle begins: 1; 1, 0; 1, 0, -1, 0; 1, 2, 1, 2, 1, 0; 1, 0, 1, 2, 3, 2, 1, 0, 1, 0; 1, 0, 1, 2, 1, 0, -1, -2, -1, 0, -1, 0; 1, 2, 1, 2, 1, 0, -1, 0, 1, 0, -1, -2, -1, -2, -1, 0; ...
References
- József Beck, Inevitable randomness in discrete mathematics, University Lecture Series, 49. American Mathematical Society, Providence, RI, 2009. xii+250 pp. ISBN: 978-0-8218-4756-5; MR2543141 (2010m:60026). See page 23.
Links
- G. C. Greubel, Rows n = 1..50 of the irregular triangle, flattened
Programs
-
Magma
A226519:= func< n,k | n eq 1 select k else (&+[JacobiSymbol(j, NthPrime(n)): j in [0..k]]) >; [A226519(n,k) : k in [1..NthPrime(n)-1], n in [1..15]]; // G. C. Greubel, Oct 05 2024
-
Maple
with(numtheory); T:=(n,k)->add(legendre(i,ithprime(n)),i=1..k); f:=n->[seq(T(n,k),k=1..ithprime(n)-1)]; [seq(f(n),n=1..15)];
-
Mathematica
Table[P = Prime[n]; Table[JacobiSymbol[k,P], {k,P-1}]//Accumulate, {n,15}]// Flatten (* G. C. Greubel, Oct 05 2024 *)
-
SageMath
def A226519(n,k): return k if n==1 else sum(jacobi_symbol(j, nth_prime(n)) for j in range(k+1)) flatten([[A226519(n,k) for k in range(1,nth_prime(n))] for n in range(1,16)]) # G. C. Greubel, Oct 05 2024
Comments