A226540 Maximum of the proper divisors of the triangular numbers.
1, 3, 5, 5, 7, 14, 18, 15, 11, 33, 39, 13, 35, 60, 68, 51, 57, 95, 105, 77, 23, 138, 150, 65, 117, 189, 203, 145, 155, 248, 264, 187, 119, 315, 333, 37, 247, 390, 410, 287, 301, 473, 495, 345, 47, 564, 588, 245, 425, 663, 689, 477, 495, 770, 798, 551, 59, 885
Offset: 2
Examples
For n = 28 we have n*(n+1)/2 = 406 and its proper divisors are 1, 2, 7, 14, 29, 58, 203. Hence a(28) = 203.
Links
- Paolo P. Lava, Table of n, a(n) for n = 2..1000
Programs
-
Maple
with(numtheory); A226540:=proc(q) local a,n; for n from 2 to q do a:=sort([op(divisors(n*(n+1)/2))]); print(a[nops(a)-1]); od; end: A226540(10^6);
-
Mathematica
Table[Divisors[(n(n+1))/2][[-2]],{n,2,60}] (* Harvey P. Dale, Apr 09 2021 *) -
PARI
a(n)=if(n==2,return(1));my(p=factor(n/gcd(n,2))[1,1],q=factor((n+1)/gcd(n+1,2))[1,1]); binomial(n+1,2)/min(p,q) \\ Charles R Greathouse IV, Jun 10 2013
Formula
a(4n) = 4n^2 + n, 4n+1 <= a(4n+1) <= (8n^2 + 6n + 1)/3, 4n+3 <= a(4n+2) <= (8n^2 + 10n + 3)/3, a(4n+3) = 4n^2 + 7n + 3. - Charles R Greathouse IV, Jun 10 2013
Comments