cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226573 Decimal expansion of lim_{k->oo} f(k), where f(1)=e, and f(k) = e - log(f(k-1)) for k>1.

Original entry on oeis.org

2, 0, 1, 6, 7, 7, 9, 7, 6, 4, 8, 9, 2, 2, 0, 0, 6, 2, 4, 2, 7, 7, 7, 9, 0, 5, 5, 4, 1, 9, 4, 0, 1, 1, 7, 3, 3, 7, 7, 2, 6, 1, 7, 8, 3, 6, 7, 6, 3, 7, 0, 6, 4, 0, 2, 4, 4, 1, 0, 3, 3, 0, 7, 2, 1, 4, 2, 7, 5, 0, 5, 7, 4, 4, 9, 0, 9, 8, 9, 9, 9, 9, 1, 5, 2, 4
Offset: 1

Views

Author

Clark Kimberling, Jun 12 2013

Keywords

Comments

Old definition was: Decimal digits of limit(f(n)), where f(1) = e-log(e), f(n) = f(f(n-1)).
Let f(x) be lesser of the two solutions of s - log(s) = x; then A226571 represents f(e). [See however the comments in A226571. - N. J. A. Sloane, Dec 09 2017]

Examples

			limit(f(n)) = 2.0167797639...
		

Crossrefs

Programs

  • Mathematica
    Program 1:
    f[s_, accuracy_] := FixedPoint[N[s - Log[#], accuracy] &, 1]
    g[s_, accuracy_] := FixedPoint[N[s + Log[#], accuracy] &, 1]
    d1 = RealDigits[f[E, 200]][[1]]  (* A226573 *)
    d2 = RealDigits[g[E, 200]][[1]]  (* A226574 *)
    s /. NSolve[s - Log[s] == 2, 200] (* both constants *)
    ***
    Program 2:
    N[ProductLog[E^E], 100] (* Clark Kimberling, Feb 15 2018 *)
  • PARI
    default(realprecision, 100); lambertw(exp(exp(1))) \\ G. C. Greubel, Sep 09 2018

Formula

Equals LambertW(e^e). - Clark Kimberling, Feb 15 2018

Extensions

Definition revised by N. J. A. Sloane, Dec 09 2017