A226596
Lengths of maximal non-crossing and non-overlapping increasing paths in n X n grids.
Original entry on oeis.org
0, 2, 4, 7, 10, 13, 16, 20, 22
Offset: 1
A solution for the case a(8)=20 is
-------------------------
01 02 . . . . . 16
.. . 03 . . . . 14
09 . 15 . 05 . . 12
.. . 04 . . . . .
.. . 06 13 . 07 . 21
.. . 08 . 11 . . 19
10 . . . . . . 17
20 18 . . . . . .
-------------------------
A253620
Maximum number of segments in nonintersecting increasing path on n X n hexagonal (isogonal) grid.
Original entry on oeis.org
0, 3, 6, 10, 14, 19, 25, 30, 36
Offset: 1
An example for a(4) = 10
. . . .
09 . . . .
01 . . . . .
00 07 . . . . 10
02 05 . . . 08
. . . . 06
03 . . 04
A272719
Maximal number of steps in a nontouching path on an n X n grid such that each step has a different length.
Original entry on oeis.org
2, 5, 8, 12, 17
Offset: 2
An example for a(6)=17:
----------------
. 2 5 7 9 15
3 1 . . 11 17
. . . . . .
. 6 . 12 . .
4 10 . . . .
8 13 . 14 16 18
A358212
a(n) is the maximal possible sum of squares of the side lengths of an n^2-gon supported on a subset 1 <= x,y <= n of an integer lattice.
Original entry on oeis.org
4, 10, 36, 98, 232
Offset: 2
- Oliver Mantas Ališauskas, Grid connector, Web application for this problem.
- Oliver Mantas Ališauskas, Giedrius Alkauskas, and Valdas Dičiūnas, Full Grid Lattice Polygons with Maximal Sum of Squares of Edge-Lengths, arXiv:2311.03011 [math.CO], 2023-2024.
- S. Chow, A. Gafni, and P. Gafni, Connecting the dots: maximal polygons on a square grid, Math. Mag. 94 (2021), no. 2, 118-124.
- G. L. Cohen and E. Tonkes, Dartboard arrangements, Elect. J. Combin., 8(2) (2001), #R4.
Showing 1-4 of 4 results.
Comments