A226635 Expansion of psi(x^4) / f(-x) in powers of x where psi(), f() are Ramanujan theta functions.
1, 1, 2, 3, 6, 8, 13, 18, 27, 37, 53, 71, 100, 132, 179, 235, 313, 405, 531, 681, 880, 1119, 1429, 1801, 2280, 2852, 3575, 4444, 5529, 6827, 8436, 10357, 12716, 15530, 18958, 23036, 27978, 33839, 40896, 49254, 59265, 71083, 85180, 101781, 121494, 144659
Offset: 0
Keywords
Examples
G.f. = 1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 8*x^5 + 13*x^6 + 18*x^7 + 27*x^8 + 37*x^9 + ... G.f. = q^11 + q^35 + 2*q^59 + 3*q^83 + 6*q^107 + 8*q^131 + 13*q^155 + 18*q^179 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, q^2] / (2 q^(1/2) QPochhammer[ q]), {q, 0, n}];
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^8 + A)^2 / (eta(x + A) * eta(x^4 + A)), n))};
Formula
Expansion of q^(-11/24) * eta(q^8)^2 / (eta(q) * eta(q^4)) in powers of q.
Euler transform of period 8 sequence [1, 1, 1, 2, 1, 1, 1, 0, ...].
G.f.: (Sum_{k>=1} x^(2*k*(k-1))) / (Product_{k>=1} (1 - x^k)).
a(n) ~ exp(Pi*sqrt(2*n/3)) / (2^(13/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Nov 16 2017
Expansion of (chi(q)^2 - chi(-q)^2)/(4*q) in powers of q^2 where chi() is a Ramanujan theta function. - Michael Somos, Nov 02 2019
Comments