A226636 Numbers whose base-3 sum of digits is 3.
5, 7, 11, 13, 15, 19, 21, 29, 31, 33, 37, 39, 45, 55, 57, 63, 83, 85, 87, 91, 93, 99, 109, 111, 117, 135, 163, 165, 171, 189, 245, 247, 249, 253, 255, 261, 271, 273, 279, 297, 325, 327, 333, 351, 405, 487, 489, 495, 513, 567, 731, 733, 735, 739, 741, 747, 757
Offset: 1
Examples
The ternary expansion of 5 is (1,2), which has sum of digits 3. The ternary expansion of 31 is (1,0,0,2), which has sum of digits 3. 10 is not on the list since the ternary expansion of 10 is (1,0,1), which has sum of digits 2 not 3.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
N:= 10: # for all terms < 3^(N+1) [seq(seq(seq(3^a+3^b+3^c, c=0..`if`(b=a, b-1,b)),b = 0..a),a=0..N)]; # Robert Israel, Jun 05 2018
-
Mathematica
Select[Range@ 757, Total@ IntegerDigits[#, 3] == 3 &] (* Michael De Vlieger, Dec 23 2016 *)
-
PARI
select( is(n)=sumdigits(n,3)==3, [1..999]) \\ M. F. Hasler, Dec 23 2016
-
Python
from itertools import islice def nextsod(n, base): c, b, w = 0, base, 0 while True: d = n%b if d+1 < b and c: return (n+1)*b**w + ((c-1)%(b-1)+1)*b**((c-1)//(b-1))-1 c += d; n //= b; w += 1 def A226636gen(sod=3, base=3): # generator of terms for any sod, base an = (sod%(base-1)+1)*base**(sod//(base-1))-1 while True: yield an; an = nextsod(an, base) print(list(islice(A226636gen(), 57))) # Michael S. Branicky, Jul 10 2022, generalizing the code by M. F. Hasler in A052224
-
Sage
[i for i in [0..1000] if sum(Integer(i).digits(base=3))==3]
Formula
a(k^3/6 + k^2 + 5*k/6 + j) = 3^(k+1) + A055235(j-1) for 1 <= j <= k^2/2+5*k/2+2. - Robert Israel, Jun 05 2018
Comments