A226646 Number of ways to express m/n as Egyptian fractions in just three terms, that is, m/n = 1/x + 1/y + 1/z satisfying 1 <= x <= y <= z and read by antidiagonals.
3, 1, 10, 1, 3, 21, 0, 3, 8, 28, 0, 1, 3, 10, 36, 0, 1, 3, 6, 12, 57, 0, 1, 2, 3, 10, 21, 42, 0, 0, 1, 4, 2, 10, 17, 70, 0, 0, 1, 3, 3, 8, 9, 28, 79, 0, 0, 0, 1, 3, 4, 7, 20, 26, 96, 0, 0, 1, 1, 2, 3, 4, 10, 21, 36, 62, 0, 0, 0, 1, 1, 7, 1, 7, 6, 21, 25, 160, 0, 0, 0, 1, 0, 3, 3, 6, 12, 12, 16, 57, 59
Offset: 1
Examples
../n m/ 1...2...3...4...5...6...7...8...9..10..11...12..13...14...15 =Allocation nbr. .1 3..10..21..28..36..57..42..70..79..96..62..160..59..136..196 A004194 .2 1...3...8..10..12..21..17..28..26..36..25...57..20...42...81 A226641 .3 1...3...3...6..10..10...9..20..21..21..16...28..11...33...36 A226642 .4 0...1...3...3...2...8...7..10...6..12...9...21...4...17...39 A192787 .5 0...1...2...4...3...4...4...7..12..10...3...17...6...21...21 A226644 .6 0...1...1...3...3...3...1...6...8..10...7...10...1....9...12 A226645 .7 0...0...1...1...2...7...3...2...3...5...2...13...8...10....9 n/a .8 0...0...0...1...1...3...3...3...1...2...0....8...3....7...19 n/a .9 0...0...1...1...0...3...2...5...3...2...0....6...2....4...10 n/a 10 0...0...0...1...1...2...0...4...4...3...0....4...1....4....8 n/a Triangle (by antidiagonals): {3}, {1, 10}, {1, 3, 21}, {0, 3, 8, 28}, {0, 1, 3, 10, 36}, {0, 1, 3, 6, 12, 57}, ...
Links
- Christian Elsholtz, Sums Of k Unit Fractions
- David Eppstein, Algorithms for Egyptian Fractions
- David Eppstein, Ten Algorithms for Egyptian Fractions
- Ron Knott, Egyptian Fractions
- Oakland University, The Erdős Number Project
- Eric Weisstein's World of Mathematics, Egyptian Fraction
- Index entries for sequences related to Egyptian fractions
Programs
-
Mathematica
f[m_, n_] := Length@ Solve[m/n == 1/x + 1/y + 1/z && 1 <= x <= y <= z, {x, y, z}, Integers]; Table[f[n, m - n + 1], {m, 12}, {n, m, 1, -1}] // Flatten
Comments