A226647 Numbers k such that Sum_{i=1..k} sigma(i) is divisible by Sum_{i=1..k} d(i), where sigma(i) = sum of divisors of i (A000203), and d(i) = number of divisors of i (A000005).
1, 9, 25, 37, 63, 71876888199
Offset: 1
Examples
A006218(9) = 23, A024916(9) = 69, 23 divides 69, so 9 is in the sequence.
Links
- C. K. Caldwell, and G. L. Honaker, Jr., Prime curio for 37
Programs
-
Mathematica
Flatten[Position[Accumulate[Table[{DivisorSigma[1,n],DivisorSigma[0,n]},{n,100}]],?(Divisible[First[#],Last[#]]&),{1},Heads->False]] (* _Harvey P. Dale, Jun 19 2013 *)
-
PARI
isok(n) = sum(k=1, n, sigma(k)) % sum(k=1, n, numdiv(k)) == 0; \\ Michel Marcus, Jul 07 2016
Extensions
a(6) from Giovanni Resta, Apr 12 2017
Comments