A226659 Sum_{k=0..n} A000041( binomial(n,k) ), where A000041(n) is the number of partitions of n.
1, 2, 4, 8, 23, 100, 1003, 31382, 5149096, 7091568720, 287786595280763, 539018517346414192796, 1130813038175196801809538188145, 2336855300714703790840987155549462486654700, 7636154577344556445476348286247799105605643795614728449082014
Offset: 0
Keywords
Examples
Equals the row sums of triangle A090011, which begins: 1; 1, 1; 1, 2, 1; 1, 3, 3, 1; 1, 5, 11, 5, 1; 1, 7, 42, 42, 7, 1; 1, 11, 176, 627, 176, 11, 1; 1, 15, 792, 14883, 14883, 792, 15, 1; 1, 22, 3718, 526823, 4087968, 526823, 3718, 22, 1; ...
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..20
Programs
-
Mathematica
Table[Sum[PartitionsP[Binomial[n,k]],{k,0,n}],{n,0,20}] (* Indranil Ghosh, Feb 21 2017 *)
-
PARI
{a(n)=sum(k=0,n,numbpart(binomial(n,k)))} for(n=0,15,print1(a(n),", "))
Formula
Row sums of triangle A090011.
Comments