cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226659 Sum_{k=0..n} A000041( binomial(n,k) ), where A000041(n) is the number of partitions of n.

Original entry on oeis.org

1, 2, 4, 8, 23, 100, 1003, 31382, 5149096, 7091568720, 287786595280763, 539018517346414192796, 1130813038175196801809538188145, 2336855300714703790840987155549462486654700, 7636154577344556445476348286247799105605643795614728449082014
Offset: 0

Views

Author

Paul D. Hanna, Jun 14 2013

Keywords

Comments

Compare to the number of partitions of 2^n (A068413).

Examples

			Equals the row sums of triangle A090011, which begins:
1;
1, 1;
1, 2, 1;
1, 3, 3, 1;
1, 5, 11, 5, 1;
1, 7, 42, 42, 7, 1;
1, 11, 176, 627, 176, 11, 1;
1, 15, 792, 14883, 14883, 792, 15, 1;
1, 22, 3718, 526823, 4087968, 526823, 3718, 22, 1; ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[PartitionsP[Binomial[n,k]],{k,0,n}],{n,0,20}] (* Indranil Ghosh, Feb 21 2017 *)
  • PARI
    {a(n)=sum(k=0,n,numbpart(binomial(n,k)))}
    for(n=0,15,print1(a(n),", "))

Formula

Row sums of triangle A090011.