cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226694 Pell equation solutions (32*a(n))^2 - 41*(5*b(n))^2 = -1 with b(n) := A226695(n), n>=0.

Original entry on oeis.org

1, 4099, 16797701, 68836974599, 282093905109001, 1156020754299711499, 4737372769026312613901, 19413752451449074792054799, 79557552808665539471527952401, 326026831996158929305246756884499, 1336057877962706483627361738184724501
Offset: 0

Views

Author

Wolfdieter Lang, Jun 20 2013

Keywords

Examples

			Pell n=0: 32^2 - 41*5^2 = -1.
Pell n=1: (32*4099)^2 - 41*(5*4097)^2 = -1.
		

Crossrefs

Cf. A097314, A097315 (Pell -1 with D = 10), A226695.

Programs

  • Mathematica
    LinearRecurrence[{4098,-1},{1,4099},20] (* Harvey P. Dale, Sep 23 2017 *)

Formula

a(n) = S(n,4098)+ S(n-1,4098), n>=0, with the Chebyshev S-polynomials (A049310). 4098 = 17*241 is the smallest positive integer x solution of x^2 - 41*y^2 = +4 with y also positive.
O.g.f.: (1 + x)/(1 - 4098*x + x^2).
a(n) = 4098*a(n-1) - a(n-2), a(-1) = -1 , a(0) = 1.