cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A227309 G.f.: 1/G(0) where G(k) = 1 - q^(k+1) / (1 - q^(k+2)/G(k+1) ).

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 10, 19, 34, 63, 115, 213, 391, 723, 1333, 2463, 4547, 8403, 15522, 28686, 53006, 97963, 181042, 334606, 618415, 1142994, 2112545, 3904592, 7216810, 13338856, 24654268, 45568784, 84225393, 155675230, 287737327, 531830605, 982993368, 1816887637, 3358192905
Offset: 0

Views

Author

Joerg Arndt, Jul 06 2013

Keywords

Comments

Sums along falling diagonals of A161492 (skew Ferrers diagrams by area and number of columns). [Joerg Arndt, Mar 23 2014]

Crossrefs

Cf. A049346 (g.f.: 1-1/G(0), G(k)= 1 + q^(k+1) / (1 - q^(k+1)/G(k+1) ) ).
Cf. A227310 (g.f.: 1/G(0), G(k) = 1 + (-q)^(k+1) / (1 - (-q)^(k+1)/G(k+1) ) ).
Cf. A226728 (g.f.: 1/G(0), G(k) = 1 + q^(k+1) / (1 - q^(k+1)/G(k+2) ) ).
Cf. A226729 (g.f.: 1/G(0), G(k) = 1 - q^(k+1) / (1 - q^(k+1)/G(k+2) ) ).
Cf. A006958 (g.f.: 1/G(0), G(k) = 1 - q^(k+1) / (1 - q^(k+1)/G(k+1) ) ).

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[x^(Range[2, nmax] - Floor[Range[2, nmax]/2])]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 05 2017 *)
  • PARI
    N = 66;  q = 'q + O('q^N);
    G(k) = if(k>N, 1, 1 - q^(k+1) / (1 - q^(k+2) / G(k+1) ) );
    Vec( 1 / G(0) )
    
  • PARI
    /* formula from the Delest/Fedou reference with t=q: */
    N=66;  q='q+O('q^N);  t=q;
    qn(n) = prod(k=1, n, 1-q^k );
    nm = sum(n=0, N, (-1)^n* q^(n*(n+1)/2) / ( qn(n) * qn(n+1) ) * (t*q)^(n+1) );
    dn = sum(n=0, N, (-1)^n* q^(n*(n-1)/2) / ( qn(n)^2 ) * (t*q)^n );
    v=Vec(nm/dn)

Formula

G.f.: 1/(1-q /(1-q^2/(1-q^2/(1-q^3/(1-q^3/(1-q^4/(1-q^4/(1-q^5/(1-q^5/(1-...) )) )) )) )) ).
G.f.: 1/x - Q(0)/(2*x), where Q(k)= 1 + 1/(1 - 1/(1 - 1/(2*x^(k+1)) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 09 2013
G.f.: 1/x - U(0)/x, where U(k)= 1 - x^(k+1)/(1 - x^(k+1)/U(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Aug 15 2013
G.f.: -W(0)/x, where W(k)= 1 - x^(k+1) - x^k - x^(2*k+2)/W(k+1); (continued fraction). - Sergei N. Gladkovskii, Aug 15 2013
G.f.: G(0) where G(k) = 1 - q/(q^(k+2) - 1 / G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Jan 18 2016
a(n) ~ c * d^n, where d = 1.84832326133106924642685135202616091890310896530577301386219207630312784... and c = 0.244648950328338656997216931963422920467577616734159139510762093105072... - Vaclav Kotesovec, Sep 05 2017

A227310 G.f.: 1/G(0) where G(k) = 1 + (-q)^(k+1) / (1 - (-q)^(k+1)/G(k+1) ).

Original entry on oeis.org

1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 2, 1, 1, 3, 2, 3, 4, 4, 6, 7, 8, 11, 13, 16, 20, 24, 31, 37, 46, 58, 70, 88, 108, 133, 167, 204, 252, 315, 386, 479, 594, 731, 909, 1122, 1386, 1720, 2124, 2628, 3254, 4022, 4980, 6160, 7618, 9432, 11665, 14433, 17860, 22093, 27341, 33824, 41847, 51785, 64065, 79267
Offset: 0

Views

Author

Joerg Arndt, Jul 06 2013

Keywords

Comments

Number of rough sandpiles: 1-dimensional sandpiles (see A186085) with n grains without flat steps (no two successive parts of the corresponding composition equal), see example. - Joerg Arndt, Mar 08 2014
The sequence of such sandpiles by base length starts (n>=0) 1, 1, 0, 1, 0, 2, 0, 5, 0, 14, 0, 42, 0, ... (A097331, essentially A000108 with interlaced zeros). This is a consequence of the obvious connection to Dyck paths, see example. - Joerg Arndt, Mar 09 2014
a(n>=1) are the Dyck paths with area n between the x-axis and the path which return to the x-axis only once (at their end), whereas A143951 includes paths with intercalated touches of the x-axis. - R. J. Mathar, Aug 22 2018

Examples

			From _Joerg Arndt_, Mar 08 2014: (Start)
The a(21) = 7 rough sandpiles are:
:
:   1:      [ 1 2 1 2 1 2 1 2 1 2 3 2 1 ]  (composition)
:
:           o
:  o o o o ooo
: ooooooooooooo  (rendering of sandpile)
:
:
:   2:      [ 1 2 1 2 1 2 1 2 3 2 1 2 1 ]
:
:         o
:  o o o ooo o
: ooooooooooooo
:
:
:   3:      [ 1 2 1 2 1 2 3 2 1 2 1 2 1 ]
:
:       o
:  o o ooo o o
: ooooooooooooo
:
:
:   4:      [ 1 2 1 2 3 2 1 2 1 2 1 2 1 ]
:
:     o
:  o ooo o o o
: ooooooooooooo
:
:
:   5:      [ 1 2 3 2 1 2 1 2 1 2 1 2 1 ]
:
:   o
:  ooo o o o o
: ooooooooooooo
:
:
:   6:      [ 1 2 3 2 3 4 3 2 1 ]
:
:      o
:   o ooo
:  ooooooo
: ooooooooo
:
:
:   7:      [ 1 2 3 4 3 2 3 2 1 ]
:
:    o
:   ooo o
:  ooooooo
: ooooooooo
(End)
From _Joerg Arndt_, Mar 09 2014: (Start)
The A097331(9) = 14 such sandpiles with base length 9 are:
01:  [ 1 2 1 2 1 2 1 2 1 ]
02:  [ 1 2 1 2 1 2 3 2 1 ]
03:  [ 1 2 1 2 3 2 3 2 1 ]
04:  [ 1 2 1 2 3 2 1 2 1 ]
05:  [ 1 2 1 2 3 4 3 2 1 ]
06:  [ 1 2 3 2 1 2 3 2 1 ]
07:  [ 1 2 3 2 1 2 1 2 1 ]
08:  [ 1 2 3 2 3 2 1 2 1 ]
09:  [ 1 2 3 2 3 2 3 2 1 ]
10:  [ 1 2 3 4 3 2 1 2 1 ]
11:  [ 1 2 3 2 3 4 3 2 1 ]
12:  [ 1 2 3 4 3 2 3 2 1 ]
13:  [ 1 2 3 4 3 4 3 2 1 ]
14:  [ 1 2 3 4 5 4 3 2 1 ]
(End)
		

Crossrefs

Cf. A049346 (g.f.: 1 - 1/G(0), where G(k)= 1 + q^(k+1) / (1 - q^(k+1)/G(k+1) ) ).
Cf. A226728 (g.f.: 1/G(0), where G(k) = 1 + q^(k+1) / (1 - q^(k+1)/G(k+2) ) ).
Cf. A226729 (g.f.: 1/G(0), where G(k) = 1 - q^(k+1) / (1 - q^(k+1)/G(k+2) ) ).
Cf. A006958 (g.f.: 1/G(0), where G(k) = 1 - q^(k+1) / (1 - q^(k+1)/G(k+1) ) ).
Cf. A227309 (g.f.: 1/G(0), where G(k) = 1 - q^(k+1) / (1 - q^(k+2)/G(k+1) ) ).

Programs

  • PARI
    N = 66;  q = 'q + O('q^N);
    G(k) = if(k>N, 1, 1 + (-q)^(k+1) / (1 - (-q)^(k+1) / G(k+1) ) );
    gf = 1 / G(0);
    Vec(gf)
    
  • PARI
    N = 66;  q = 'q + O('q^N);
    F(q,y,k) = if(k>N, 1, 1/(1 - y*q^2 * F(q, q^2*y, k+1) ) );
    Vec( 1 + q * F(q,q,0) ) \\ Joerg Arndt, Mar 09 2014

Formula

a(0) = 1 and a(n) = abs(A049346(n)) for n>=1.
G.f.: 1/ (1-q/(1+q/ (1+q^2/(1-q^2/ (1-q^3/(1+q^3/ (1+q^4/(1-q^4/ (1-q^5/(1+q^5/ (1+-...) )) )) )) )) )).
G.f.: 1 + q * F(q,q) where F(q,y) = 1/(1 - y * q^2 * F(q, q^2*y) ); cf. A005169 and p. 841 of the Odlyzko/Wilf reference; 1/(1 - q * F(q,q)) is the g.f. of A143951. - Joerg Arndt, Mar 09 2014
G.f.: 1 + q/(1 - q^3/(1 - q^5/(1 - q^7/ (...)))) (from formulas above). - Joerg Arndt, Mar 09 2014
G.f.: F(x, x^2) where F(x,y) is the g.f. of A239927. - Joerg Arndt, Mar 29 2014
a(n) ~ c * d^n, where d = 1.23729141259673487395949649334678514763130846902468... and c = 0.0773368373684184197215007198148835507944051447907... - Vaclav Kotesovec, Sep 05 2017
G.f.: A(x) = 2 -1/A143951(x). - R. J. Mathar, Aug 23 2018

A226728 G.f.: 1/G(0), where G(k) = 1 + q^(k+1) / (1 - q^(k+1)/G(k+2) ).

Original entry on oeis.org

1, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, -2, 0, 0, 0, 3, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, -4, 0, 0, 0, 4, 0, 0, 0, -3, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, -6, 0, 0, 0, 7, 0, 0, 0, -5, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, -9, 0
Offset: 0

Views

Author

Joerg Arndt, Jun 29 2013

Keywords

Crossrefs

Cf. A049346 (g.f.: 1 - 1/G(0), G(k)= 1 + q^(k+1) / (1 - q^(k+1)/G(k+1) ) ).
Cf. A226729 (g.f.: 1/G(0), G(k) = 1 - q^(k+1) / (1 - q^(k+1)/G(k+2) ) ).
Cf. A006958 (g.f.: 1/G(0), G(k) = 1 - q^(k+1) / (1 - q^(k+1)/G(k+1) ) ).
Cf. A227309 (g.f.: 1/G(0), G(k) = 1 - q^(k+1) / (1 - q^(k+2)/G(k+1) ) ).

Programs

  • PARI
    N = 166;  q = 'q + O('q^N);
    G(k) = if(k>N, 1, 1 + q^(k+1) / (1 - q^(k+1) / G(k+2) ) );
    gf = 1 / G(0);
    Vec(gf)

Formula

G.f.: 1/(1+q/(1-q/(1+q^3/(1-q^3/(1+q^5/(1-q^5/(1+q^7/(1-q^7/(1+ ... ))))))))).
G.f.: 1/W(0), where W(k)= 1 + x^(2*k+1)/(1 - x^(2*k+1)/W(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Aug 16 2013

A227045 G.f.: 1/(1 - q/G(0)) where G(k) = 1 - q^(k+1) / (1 - q^(k+1) / G(k+1) ).

Original entry on oeis.org

1, 1, 2, 5, 13, 35, 95, 260, 713, 1959, 5386, 14815, 40759, 112151, 308609, 849240, 2337009, 6431246, 17698332, 48704714, 134032593, 368850417, 1015056867, 2793383746, 7687248186, 21154913043, 58217239536, 160210872557, 440892153268, 1213312738702, 3338974845151, 9188688696438
Offset: 0

Views

Author

Joerg Arndt, Jul 06 2013

Keywords

Crossrefs

Cf. A006958 (g.f.: 1/G(0), where G(k) = 1 - q^(k+1) / (1 - q^(k+1)/G(k+1) ) ).
Cf. A226729 (g.f.: 1/G(0), where G(k) = 1 - q^(k+1) / (1 - q^(k+1)/G(k+2) ) ).
Cf. A226728 (g.f.: 1/G(0), where G(k) = 1 + q^(k+1) / (1 - q^(k+1)/G(k+2) ) ).
Cf. A227309 (g.f.: 1/G(0), where G(k) = 1 - q^(k+1) / (1 - q^(k+2)/G(k+1) ) ).
Cf. A227310 (g.f.: 1/G(0), where G(k) = 1 + (-q)^(k+1) / (1 - (-q)^(k+1)/G(k+1) ) ).

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[1/(1 - x/Fold[(1 - #2/#1) &, 1, Reverse[x^(Range[nmax + 2] - Floor[Range[nmax + 2]/2])]]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 05 2017 *)
  • PARI
    N = 66;  q = 'q + O('q^N);
    G(k) = if(k>N, 1, 1 - q^(k+1) / (1 - q^(k+1) / G(k+1) ) );
    gf = 1 /(1- q/G(0));
    Vec(gf)

Formula

G.f.: 1/(1-q/ (1-q/(1-q/ (1-q^2/(1-q^2/ (1-q^3/(1-q^3/ (1-q^4/(1-q^4/ (1-q^5/(1-q^5/ (1-...))))))))))) ).
G.f. A(x) = 1/(1 - B(x)) where B(x) is the g.f. of A006958.
a(n) ~ c * d^n, where d = 2.751949072495748078279227332764623096815571855905843246297955690122791154... and c = 0.215973947378529032758849789768859077066690378163074586384819930605436492... - Vaclav Kotesovec, Sep 05 2017
Showing 1-4 of 4 results.