cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A193257 Floor((10^n)/(log(10^n) - 1)).

Original entry on oeis.org

7, 27, 169, 1217, 9512, 78030, 661458, 5740303, 50701542, 454011971, 4110416300, 37550193649, 345618860220, 3201414635780, 29816233849000, 279007258230819, 2621647966812031, 24723998785919976, 233922961602470390, 2219671974013732243
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jul 19 2011

Keywords

Comments

lim n -> infinity (log(n) - n/pi(n)) = 1, where pi(n) is the prime counting function.

Examples

			a(2) = 27 because (10^2)/(log(10^2) - 1) = 27.7379415786....
		

References

  • A. M. Legendre, Essai sur la Théorie des Nombres, Paris: Duprat, 1808.

Crossrefs

Another version of A226744.

Programs

  • Magma
    [Floor(10^n/(Log(10^n)-1)) : n in [1..20]]
    
  • Mathematica
    Table[Floor[10^n/(Log[10^n] - 1)], {n, 20}]
  • PARI
    for(n=1, 20, print1(floor(10^n/(log(10^n)-1)), ", "))
    
  • PARI
    a(n)=10^n\(n*log(10)-1) \\ Charles R Greathouse IV, Jul 30 2011

Formula

a(n) = floor((10^n)/(log(10^n) - 1)).

A226945 Integer nearest f(10^n), where f(x) = Sum of ( mu(k) * H(k)/k^(3/2) * Integral Log(x^(1/k)) ) for k = 1 to infinity, where H(k) is the harmonic number sum_{i=1..k} 1/i.

Original entry on oeis.org

4, 25, 168, 1226, 9585, 78521, 664652, 5761512, 50847348, 455050385, 4118051652, 37607908133, 346065524108, 3204941711340, 29844570436484, 279238341185832, 2623557156537070, 24739954282695698, 234057667295619287, 2220819602542218793
Offset: 1

Views

Author

Arkadiusz Wesolowski, Aug 31 2013

Keywords

Comments

The sequence gives exactly the values of pi(10^n) for n = 1 to 3.
A228724 gives the difference between A006880 and this sequence.

Crossrefs

Programs

  • Mathematica
    f[n_Integer] := Sum[N[MoebiusMu[k]*HarmonicNumber[k]/k^(3/2)*LogIntegral[n^(1/k)], 50], {k, 5!}]; Table[Round[f[10^n]], {n, 20}]
Showing 1-2 of 2 results.