A226749 Number of partitions of n into distinct Platonic numbers, cf. A053012.
1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 7, 6, 6, 6, 7, 7, 8, 8, 9, 9, 9, 9, 9, 9, 11, 11, 11, 12, 13, 13, 12, 12, 13, 15, 15, 16, 17, 17, 16, 18, 18, 19, 19, 21, 21, 23, 24, 25, 24, 24, 24, 26, 26, 29, 32
Offset: 0
Keywords
Examples
First Platonic numbers: 1, 4, 6, 8, 10, 12, 19, 20, 27, ... a(10) = #{10, 6+4} = 2; a(11) = #{10+1, 6+4+1} = 2; a(12) = #{12, 8+4} = 2; a(13) = #{12+1, 8+4+1} = 2; a(14) = #{10+4, 8+6} = 2; a(15) = #{10+4+1, 8+6+1} = 2; a(16) = #{12+4, 10+6} = 2; a(17) = #{12+4+1, 10+6+1} = 2; a(18) = #{12+6, 10+8, 8+6+4} = 3; a(19) = #{19, 12+6+1, 10+8+1, 8+6+4+1} = 4; a(20) = #{20, 19+1, 12+8, 10+6+4} = 4.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
Programs
-
Haskell
a226749 = p a053012_list where p _ 0 = 1 p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m