cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A257103 Composite numbers n such that n'=(n+4)', where n' is the arithmetic derivative of n.

Original entry on oeis.org

21, 56, 1862, 2526, 1352797, 2201422, 3206062, 34844422, 42400318, 8586830293, 20967471193, 23194695022, 43790421673, 45041812729, 48438881254, 101060544853, 177839630854, 180939891343, 198419358598, 305550990673, 354694083622, 661663823662, 785220739279
Offset: 1

Views

Author

Paolo P. Lava, Apr 17 2015

Keywords

Comments

If the limitation of being composite is removed we also have the lesser of cousin prime pairs (A023200).
a(45) > 5*10^13. - Hiroaki Yamanouchi, Aug 27 2015

Examples

			21' = (21 + 4)' = 25' = 10;
56' = (56 + 4)' = 60' = 92.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:= proc(q,h) local a,b,n,p;
    for n from 1 to q do if not isprime(n) then a:=n*add(op(2,p)/op(1,p),p=ifactors(n)[2]); b:=(n+h)*add(op(2,p)/op(1,p),p=ifactors(n+h)[2]);
    if a=b then print(n); fi; fi; od; end: P(10^9,4);
  • Mathematica
    a[n_] := If[Abs@n < 2, 0, n Total[#2/#1 & @@@ FactorInteger[Abs@ n]]]; Select[Range@ 10000, And[CompositeQ@ #, a@ # == a[# + 4]] &] (* Michael De Vlieger, Apr 22 2015, after Michael Somos at A003415 *)

Extensions

a(8)-a(10) from Lars Blomberg, May 06 2015
a(11)-a(23) from Hiroaki Yamanouchi, Aug 27 2015

A293252 Numbers k such that k = x + y, k' = x' + y' and k'' = x'' + y'', where k' and k'' are the first and second arithmetic derivatives of k.

Original entry on oeis.org

3, 778, 1331, 1575, 1589, 3111, 5368, 14060, 17649, 17714, 23232, 33813, 34353, 36234, 52936, 53391, 66375, 74544, 80938, 88945, 93475, 94905, 97470, 98434, 156816, 180804, 207754, 229502, 238830, 267120, 274065, 357318, 367921, 400500, 406700, 411872, 418037
Offset: 1

Views

Author

Paolo P. Lava, Oct 04 2017

Keywords

Comments

A226779(n) + 1 are terms of the sequence: for these numbers the relation stands for any following derivative because n = 1 + (n-1), n' = 0 + (n-1)' and n' = (n-1)' by definition. Apart 3, no other prime p can be in the sequence because p = x + y implies p' = 1 = x' + y' that is impossible (for 3 we have 3 = 1 + 2 and 3' = 1 = 1' + 2' = 0 + 1). Similarly, x and y cannot be both primes.
Is there any number that admits two or more different partitions?

Examples

			1331 = 198 + 1133, 1331' = 363 = 198' + 1133' = 249 + 114, 1331'' = 187 = 198'' + 1133'' = 86 + 101.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,c,k,n,p; for n from 1 to q do
    for k from 1 to trunc(n/2) do a:=k*add(op(2,p)/op(1,p),p=ifactors(k)[2]);
    b:=(n-k)*add(op(2,p)/op(1,p),p=ifactors(n-k)[2]); c:=n*add(op(2,p)/op(1,p),p=ifactors(n)[2]); if c=a+b then a:=a*add(op(2,p)/op(1,p),p=ifactors(a)[2]); b:=b*add(op(2,p)/op(1,p),p=ifactors(b)[2]); c:=c*add(op(2,p)/op(1,p),p=ifactors(c)[2]);
    if c=a+b then print(n); break; fi; fi; od; od; end: P(10^5);
  • Mathematica
    f[n_] := If[Abs@ n < 2, 0, n Total[#2/#1 & @@@ FactorInteger@ Abs@ n]]; Select[Range[2000], Function[k, Count[IntegerPartitions[k, {2}], ?(And[f@ k == f@ #1 + f@ #2, Nest[f, k, 2] == Nest[f, #1, 2] + Nest[f, #2, 2]] & @@ # &)] > 0]] (* _Michael De Vlieger, Oct 08 2017 *)

Extensions

a(25)-a(37) from Giovanni Resta, Oct 05 2017

A257105 Composite numbers n such that n'=(n+8)', where n' is the arithmetic derivative of n.

Original entry on oeis.org

132, 476, 2108, 16748, 27548, 28676, 99524, 100076, 239948, 308228, 344129, 573476, 601676, 822908, 860276, 883268, 1673228, 3274010, 4959476, 7548956, 8916044, 9048428, 9215348, 9643169, 9833588, 10011908, 14773676, 17119436, 18529964, 19459028, 21335948, 21739148
Offset: 1

Views

Author

Paolo P. Lava, Apr 17 2015

Keywords

Comments

If the limitation of being composite is removed we also have the numbers p such that if p is prime then p + 8 is prime too (A023202).

Examples

			132' = (132 + 8)' = 140' = 188;
476' = (476 + 8)' = 484' = 572.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:= proc(q,h) local a,b,n,p;
    for n from 1 to q do if not isprime(n) then a:=n*add(op(2,p)/op(1,p),p=ifactors(n)[2]); b:=(n+h)*add(op(2,p)/op(1,p),p=ifactors(n+h)[2]);
    if a=b then print(n); fi; fi; od; end: P(10^9,8);
  • Mathematica
    a[n_] := If[Abs@ n < 2, 0, n Total[#2/#1 & @@@ FactorInteger[Abs@ n]]];
    Select[Range@ 100000, And[CompositeQ@ #, a@# == a[# + 8]] &] (* Michael De Vlieger, Apr 22 2015, after Michael Somos at A003415 *)

A257107 Composite numbers n such that n'=(n+12)', where n' is the arithmetic derivative of n.

Original entry on oeis.org

16, 65, 88, 209, 11009, 38009, 680609, 2205209, 2860198, 3515609, 4347209, 5365387, 5809361, 10595009, 12006209, 31979009, 83255059, 89019209, 152915402, 169130009, 172147423, 225869899, 244766009, 247590209, 258084209, 325622009, 357777209, 377330609
Offset: 1

Views

Author

Paolo P. Lava, Apr 17 2015

Keywords

Comments

If the limitation of being composite is removed we also have the numbers p such that if p is prime then p + 12 is prime too (A046133).

Examples

			16' = (16 + 12)' = 28' = 32;
65' = (65 + 12)' = 77' = 18.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:= proc(q,h) local a,b,n,p;
    for n from 1 to q do if not isprime(n) then a:=n*add(op(2,p)/op(1,p),p=ifactors(n)[2]); b:=(n+h)*add(op(2,p)/op(1,p),p=ifactors(n+h)[2]);
    if a=b then print(n); fi; fi; od; end: P(10^9,12);
  • Mathematica
    a[n_] := If[Abs@ n < 2, 0, n Total[#2/#1 & @@@ FactorInteger[Abs@ n]]];
    Select[Range@ 100000, And[CompositeQ@ #, a@# == a[# + 12]] &] (* Michael De Vlieger, Apr 22 2015, after Michael Somos at A003415 *)

Extensions

a(16)-a(28) from Lars Blomberg, May 06 2015
Showing 1-4 of 4 results.