A257103 Composite numbers n such that n'=(n+4)', where n' is the arithmetic derivative of n.
21, 56, 1862, 2526, 1352797, 2201422, 3206062, 34844422, 42400318, 8586830293, 20967471193, 23194695022, 43790421673, 45041812729, 48438881254, 101060544853, 177839630854, 180939891343, 198419358598, 305550990673, 354694083622, 661663823662, 785220739279
Offset: 1
Keywords
Examples
21' = (21 + 4)' = 25' = 10; 56' = (56 + 4)' = 60' = 92.
Links
- Hiroaki Yamanouchi, Table of n, a(n) for n = 1..44
Programs
-
Maple
with(numtheory); P:= proc(q,h) local a,b,n,p; for n from 1 to q do if not isprime(n) then a:=n*add(op(2,p)/op(1,p),p=ifactors(n)[2]); b:=(n+h)*add(op(2,p)/op(1,p),p=ifactors(n+h)[2]); if a=b then print(n); fi; fi; od; end: P(10^9,4);
-
Mathematica
a[n_] := If[Abs@n < 2, 0, n Total[#2/#1 & @@@ FactorInteger[Abs@ n]]]; Select[Range@ 10000, And[CompositeQ@ #, a@ # == a[# + 4]] &] (* Michael De Vlieger, Apr 22 2015, after Michael Somos at A003415 *)
Extensions
a(8)-a(10) from Lars Blomberg, May 06 2015
a(11)-a(23) from Hiroaki Yamanouchi, Aug 27 2015
Comments