A226784 If gcd(n,6) != 1 then a(n)=0, otherwise a(n)=6^(-1) in Z/nZ*.
0, 0, 0, 0, 1, 0, 6, 0, 0, 0, 2, 0, 11, 0, 0, 0, 3, 0, 16, 0, 0, 0, 4, 0, 21, 0, 0, 0, 5, 0, 26, 0, 0, 0, 6, 0, 31, 0, 0, 0, 7, 0, 36, 0, 0, 0, 8, 0, 41, 0, 0, 0, 9, 0, 46, 0, 0, 0, 10, 0, 51, 0, 0, 0, 11, 0, 56, 0, 0
Offset: 1
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Bertrand Teguia Tabuguia and Wolfram Koepf, FPS In Action: An Easy Way To Find Explicit Formulas For Interlaced Hypergeometric Sequences, arXiv:2207.01031 [cs.SC], 2022.
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, -1).
Programs
-
Maple
A226784 := proc(n) local x,a,m ; a := 6 ; m := 6 ; if igcd(n,m) > 1 or n =1 then 0; else msolve(x*a=1,n) ; op(%) ; op(2,%) ; end if; end proc: # R. J. Mathar, Jun 28 2013
-
Mathematica
Inv[a_, mod_] := Which[mod == 1,0, GCD[a, mod] > 1, 0, True, Last@Reduce[a*x == 1, x, Modulus -> mod]];Table[Inv[6, n], {n, 1, 122}] (* Second program: *) Table[If[GCD[n, 6] != 1, 0, ModularInverse[6, n], 0], {n, 1, 100}] (* Jean-François Alcover, Mar 14 2023 *)
-
PARI
a(n)=if(gcd(n,6)>1,0,lift(Mod(1,n)/6)) \\ Charles R Greathouse IV, Jun 18 2013
Formula
G.f.: -x^5*(x^8-6*x^2-1) / (x^12-2*x^6+1). a(n) = 2*a(n-6)-a(n-12). - Colin Barker, Jun 20 2013
a(6n+1) = A016861(n), n>0. a(6n+2) = a(6n+3) = a(6n+4) = 0. a(6n+5)=n+1. - R. J. Mathar, Jun 28 2013
a(n) = Sum_{k=1..n} k*(floor((6k-1)/n)-floor((6k-2)/n)), n>1. - Anthony Browne, Jun 19 2016
Extensions
Name corrected by David A. Corneth, Jun 20 2016