cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A226836 Squares s such that first m and last m digits of the binary representation are perfect positive squares written in binary, and m = floor(binaryLength(s)/2), where binaryLength(s) = A070939(s) is the binary length of s.

Original entry on oeis.org

36, 289, 4624, 10404, 115600, 248004, 1083681, 1281424, 2232036, 2509056, 21307456, 23892544, 31494544, 40144896, 66357316, 271359729, 340919296, 479785216, 512026384, 597215844, 767068416, 4831918144, 5454708736, 8126661904, 8522982400, 12273094656, 16705045504
Offset: 1

Views

Author

Alex Ratushnyak, Jun 19 2013

Keywords

Comments

The sequence of roots of a(n) begins: 6, 17, 68, 102, 340, 498, 1041, 1132, 1494, 1584, 4616, 4888, 5612, 6336, 8146, 16473, 18464, 21904, 22628, 24438, 27696, 69512, 73856, 90148, 92320, ...

Crossrefs

Programs

  • C
    #include 
    #include 
    typedef unsigned long long U64;
    U64 isSquare(U64 a) {
        U64 s = sqrt(a);
        return (s*s==a);
    }
    int main() {
      U64 i, j, n, sq, s, S;
      for (n = 1; n < (1ULL<<20); ++n) {
        for (i = 64, j = sq = n*n; j < (1ULL<<63); j += j)
          --i;  // binary length of sq
        j = i >> 1;  //  Sbs or Ss, binary length of s is j
        s = sq & ((1ULL<> (j+(i&1));
        if (isSquare(S) && s && isSquare(s)) printf("%llu, ", sq);
      }
      return 0;
    }